In the "disadvantages" section for each location, you can take it as a given that there is no naturally occuring breathable atmosphere. I'm not going to bother adding it to each entry.
Mercury
Jim Shifflett has an in-depth analysis here of a the pros and cons of a Mercury colony. He goes into much more detail than I do.
Crust is probably rich in iron and magnesium silicates. Mercury possibly has the highest concentration of heavier elements in the solar system.
There is some evidence that the polar areas have ice and other volatiles hidden in permanently shadowed craters. There certainly isn't any closer to the equator, the solar heat will vaporize it like snowflakes under an acetylene torch.
The solar constant is a whopping 6.3 to 14.5 kW/m2, or an average of 6.5 times that of Terra. This makes for abundant solar power. Since Mercury's axial tilt is so low (0.01°) there is a possibility of polar peaks of eternal light.
Mercury is the most expensive planet to soft-land on in the solar system (3,006 m/s delta V). All other planets either have lower gravity (for a lower energy cost) or possess an atmosphere usable for aerobraking (which gives you free delta V you don't have to pay for with rocket thrust).
Mercury is deep within Sol's gravity well, which increases the delta-V cost to travel to and from.
The solar heat can drive temperatures on the equator up to 700 K (427°C), hot enough to melt lead. The equatorial day-night temperature variation will be hard on equipment and habitats. Polar temperatures only get to 273 K (0°C) which is more reasonable for a habitat.
Be aware that there is a lot of science fiction written before scientists discovered that Mercury was NOT tidally locked to the sun with a permanent brightside and darkside. Pre-1965 mostly. The classic is Alan E. Nourse's short story Brightside Crossing, which is still a very entertaining read. Scientists discovered that Mercury actually rotations in a 2:3 resonance with Sol. Sorry, Alan.
There are a few post 1965 SF stories where the equator of Mercury is totally plated over with solar power cells, generally place by Von Neumann self-replicating machines. This is to provide incredible amounts of energy for some great undertaking, which generally turns out to be the large scale production of antimatter.
Agriculture would be possible with 2.1x1013-1.4x1015 kg of water
covered by 5.65x109m3 of carbon-rich hydrocarbons.
Crops would provide food and oxygen, and consume the carbon dioxide we exhale.
All human habitation and agriculture would be underground to avoid temperature extremes,
ionizing radiation, and the loss of oxygen, water and carbon dioxide to the surface.
Filtered light could be used for crops, but it is likely that rapidly growing crop varieties
could be developed which would take advantage of the high light intensity and the long
Mercury day, where sunrise to sunset lasts for 88 Earth days.
X-ray spectrometry for Si, Mg, Al, S, Ca, Ti, Fe, Cl, Cr and Mn,
gamma-ray spectrometry for K, Th and U
and gamma-ray spectrometry for Al, Ca, S, Fe and Na
from Mercury MESSENGER
shows the following average composition of Mercury's soil compared to Earth:
Average Element Concentration (%weight)
Planet\Element
O
Si
Mg
Al
S
Ca
Ti
Fe
Cl
Cr
Mn
Na
K
Th
U
C
N
H
Mercury (tens of cm depth)
42.3
24.6
12.5
7.1
2.3
5.9
.2
1.9
< .2
< .5
< .5
2.9
.1
.00002
.00001
?
?
?
Earth (continental crust)
47
28
2.5
8
.04
4
.5
5
.02
.02
.1
2
2
.0007
.0002
.1
.002
.1
The consistency of the X-ray and gamma-ray spectrometry data indicates that the
compositions above apply down to depths of tens of centimeters,
and that the soil is homogeneous to this depth.
It is not known for sure that there is enough of certain elements to grow
crops, particularly the volatile elements C and N which cannot be
measured by these methods. However, the fact that Mercury's
K/Th ratio
is higher than Earth strongly suggests that Mercury's volatile elements have not
been boiled away at some point in the planet's history. The S abundance
supports this conclusion. The K abundance also supports this conclusion, being
similar to the abundance on Earth as a whole. However, K abundance is low
compared to that in the Earth's continental crust, which might be a problem for
plant growth. It is also possible that some of the elements are locked up in minerals
which cannot be metabolized by plants. The MESSENGER probe is currently gathering
ultraviolet and infrared spectrometry data
and other data about
the soil and the high radar-reflective areas, so some of these questions might
be answered soon.
Several other aspects of Mercury make it a good prospect for a colony.
One very important advantage is the high solar light intensity, which is stronger
than on Earth by a factor of 10.6 at perihelion and 4.6 at aphelion.
This strong light intensity would provide virtually unlimited power via electronic
solar arrays, and the resulting vertical temperature gradients of
~200oC/m would provide even more unlimited
power via thermal solar arrays. With such an unlimited and inexpensive power
source, almost anything needed for survival could be produced.
The gravity on Mercury is 38% that of Earth, which is strong enough to avoid the
reduction in bone mass that occurs in very low gravity and weightless environments.
There are no temperature variations over periods longer than the
Mercury day (like Earth's seasons),
which avoids the need for heating/cooling equipment within the 22+/-1oC
underground rings mentioned above.
This occurs because Mercury's orbit is synchronized with its rotation such that
0deg and 180deg longitudes always experience midnight and noon at perihelion
whereas 90deg and 270deg longitudes always experience midnight and noon at aphelion.
The rings would be about 5000km long, similar to the diameter of the planet.
They would be only 20-60km wide because of horizontal temperature gradients of
.035-.097oC/km.
This results in a total area of about 40x5000=200,000km2 of
22+/-1oC temperature around each pole. The rings could also be extended
hundreds of floors downwards, essentially by making underground skyscrapers.
And the entire area between the rings and the poles could also be populated
(albeit more sparsely) simply by using abundant solar power.
Now, an underground existence may sound undesirable to many people.
However, that fact is that most people spend 95% of their lives indoors,
and from a quality-of-life perspective there is little difference between
indoors above ground and indoors below ground. And the colony could still have
natural areas, trees, flowers, parks, lakes, wild animals, etcetera.
In fact it would probably need all of these things to maintain the ecosystem.
The only difference from Earth is that they would be in man-made
underground greenhouses instead of on the planet surface.
Mars
automatically comes to mind when discussing planetary colonization,
and manned missions to Mars have been the long term focus of US
space exploration plans since 2004. But despite all the hype, Mars is really a
poor prospect for colonization. The solar light intensity on Mars is .43 that of Earth,
which makes solar power and agriculture much less practical than on Mercury.
The gravity of Mars is 38% of Earth, essentially equal to Mercury. The magnetic
field of Mars is .1% of Earth, and its atmosphere density is 2% that of Earth,
so protection from ionizing radiation would require underground habitation, the
same as on Mercury. The average equatorial surface temperature of Mars is about
-45oC (-50oF), which would be the constant temperature underground.
And of course the temperature gets much lower away from the equator. Such low temperatures
can be withstood by machines such as the Spirit, Opportunity and Curiosity Mars rovers,
but not by people. Human habitation of Mars would be problematic
because of the very low temperatures, limited solar power capacity,
and a biological history which precludes oil, gas and coal deposits.
Human habitation would probably be impossible without nuclear power, and uranium mining
and nuclear plants would be very challenging in an airless, cold enviroment.
Also, concentrated uranium deposits are probably less common than on Earth because
they depend on sedimentary and hydrothermal processes which are more prevalent on Earth.
The other planets, moons and asteroids have even worse drawbacks than Mars.
Asteroid impacts
of 5km diameter or greater occur roughly once every 10 million years, and those of 10km
or greater occur roughly once every 100 million years. In the past 540 million years there
have been 5 extinction events where more than 50% of the Earth's species were killed off,
including the Permian-Triassic extinction where 90% of the species were lost.
Most scientists think that some of these were caused by asteriod impacts. A well proven example
is the Chicxulub impact which
resulted from a 10km asteroid impact at the Cretaceous-Tertiary boundary 65 million years
ago and caused the extinction of 70% of the Earth's species, including the dinosaurs.
Even larger impacts
have occured at earlier times, of which only a few are known because their impact craters
get erased by the Earth's geological processes over time. It is thought that a
20km or larger asteroid
would cause the extinction of all higher order animals and plants, leaving only microorganisms.
While the likelihood of such an event is very small in any given year,
it could happen at any time, and it is almost guaranteed to happen eventually.
Given the facts above, it appears that the focus of US space exploration plans should
be shifted from Mars to Mercury. In particular, the US has already had four successful
Mars rovers, so how about a Mercury rover mission.
Perhaps such a mission could focus on a detailed analysis of the water ice,
the dark material covering the water ice, and the soil. Such an analysis would be critical
for a Mercury colony, and it would also be of interest from a purely scientific standpoint.
How deep are the water ice deposits? Would the water need to be purged of poisonous
contaminants before it could be used for drinking or agriculture?
Is the dark covering material made out of hydrocarbons as several scientists have suggested?
How much of this material is there, and could it be used as a source of carbon for agriculture?
What is the soil concentration of Carbon and Nitrogen, elements that could not be measured by
MESSENGER's gamma-ray and X-ray spectrometers? What minerals are present, and are some of the
elements critical for agriculture locked up in minerals which cannot be metabolized by plants?
Perhaps it would be best to land the rover near a small crater with water deposits, so it
could hide in the crater from the hot sun, but project solar cells or a mirror over the edge.
Some good landing locations could probably be found among the large number of high resolution
images taken by MESSENGER.
The main motivation for investigating Mercury is its potential for hosting a self-sustaining human colony,
which would protect humanity from extinction in the event of a catastrophic asteroid impact.
A second motivation is simply to increase our scientific understanding of the solar system.
It is very unlikely that Mercury could ever be a practical source of minerals or energy to be
transported back to Earth, or that Mercury would ever have any other Earth-serving economic value.
But surely preservation of the human species and scientific curiosity are better motivations than economic benefit.
Humans are part of a universe where time is measured in billions of years.
We need to take a long term view, and consider the future of the human species
in the next thousand, million and billion years, not just the next 10 or 100 years.
A Mercury colony would be a
challenging and costly effort
for sure. The voyage to Mercury might take 6.5 years like the
MESSENGER trip
because of the large velocity change involved, and the spacecraft would require
heavy shielding against ionizing radiation.
Much planning and preparation would be needed to ensure that the colony could get
through the first weeks, months, and years, with little or no resupply from Earth.
However, a Mercury colony appears to be a real possibilty
using current technology, not a fantasy for the distant future.
In fact, if we delay until the distant future, or even 50 years or so,
such an effort will probably become impossible.
This is because us humans will consume the Earth's non-renewable energy
and mineral resources almost completely within the next several decades,
severely reducing our discretionary income for costly activities such as space travel.
We should be pursuing a Mercury colony now, before it is too late.
I don’t think any of us really trusted the Nerva-K under our landing craft.
Think it through. For long trips in space, you use an ion jet giving low thrust over long periods of time. The ion motor on our own craft had been decades in use. Where gravity is materially lower than Earth’s, you land on dependable chemical rockets. For landings on Earth and Venus, you use heat shields and the braking power of the atmosphere. For landing on the gas giants—but who would want to?
The Nerva-class fission rockets are used only for takeoff from Earth, where thrust and efficiency count. Responsiveness and maneuverability count for too much during a powered landing. And a heavy planet will always have an atmosphere for braking.
Pluto didn’t.
For Pluto, the chemical jets to take us down and bring us back up were too heavy to carry all that way. We needed a highly maneuverable Nerva-type atomic rocket motor using hydrogen for reaction mass.
And we had it. But we didn’t trust it.
(ed note: though as it turns out, Mercury has about six times the surface gravity of Pluto, and Mercury also does not have an atmosphere for braking. When this story was written it was thought that Pluto had a much higher gravity)
For a long time nobody—not even Conrad Taylor—spoke a word. All the members of the Committee were marshalling their thoughts about those difficult people the Hermians, so ably represented here by their Ambassador.
To most people, Mercury was a fairly good approximation of Hell; at least, it would do until something worse came along. But the Hermians were proud of their bizarre planet, with its days longer than its years, its double sunrises and sunsets, its rivers of molten metal. By comparison, the Moon and Mars had been almost trivial challenges. Not until men landed on Venus (if they even did) would they encounter an environment more hostile than that of Mercury.
And yet this world had turned out to be, in many ways, the key to the solar system. This seemed obvious in retrospect, but the Space Age had been almost a century old before the fact was realized. Now the Hermians never let anyone forget it.
Long before men reached the planet, Mercury’s abnormal density hinted at the heavy elements it contained; even so, its wealth was still a source of astonishment, and had postponed for a thousand years any fears that the key metals of human civilization would be exhausted. And these treasures were in the best possible place, where the power of the Sun was ten times greater than on frigid Earth.
Unlimited energy, unlimited metal; that was Mercury. Its great magnetic launchers could catapult manufactured products to any point in the solar system. It could also export energy, in synthetic transuranium isotopes or pure radiation. It had even been proposed that Hermian lasers would one day thaw out gigantic Jupiter, but this idea had not been well received on the other worlds. A technology that could cook Jupiter had too many tempting possibilities for interplanetary blackmail.
That such a concern had ever been expressed said a good deal about the general attitude towards the Hermians. They were respected for their toughness and engineering skills, and admired for the way in which they had conquered so fearsome a world. But they were not liked, and still less were they completely trusted.
At the same time, it was possible to appreciate their point of view. The Hermians, it was often joked, sometimes behaved as if the Sun was their, personal property. They were bound to it in an intimate love-hate relationship—as the Vikings had once been linked to the sea, the Nepalese to the Himalayas, the Eskimos to the Tundra. They would be most unhappy if something came between them and the natural force that dominated and controlled their lives.
Some psychologists had claimed that it was almost impossible to understand fully the mentality of anyone born and bred on Mercury. Forever exiled from Earth by its three-times-more-powerful gravity, Hermians could stand on the Moon and look across the narrow gap to the planet of their ancestors, even of their own parents, but they could never visit it. And so, inevitably, they claimed that they did not want to.
They pretended to despise the soft rains, the rolling fields, the lakes and seas, the blue skies—all the things that they could know only through recordings. Because their planet was drenched with such solar energy that the day time temperature often reached six hundred degrees, they affected a rather swaggering roughness that did not bear a moment’s serious examination. In fact, they tended to be physically weak, since they could only survive if they were totally insulated from their environment. Even if he could have tolerated the gravity, a Hermian would have been quickly incapacitated by a hot day in any equatorial country on Earth.
Yet in matters that really counted, they were tough. The psychological pressures of that ravening star so close at hand, the engineering problems of tearing into a stubborn planet and wrenching from it all the necessities of life—these had produced a spartan and in many ways highly admirable culture. You could rely on the Hermians; if they promised something, they would do it, though the bill might be considerable. It was their own joke that, if the sun ever showed signs of going nova, they would contract to get it under control—once the fee had been settled. It was a non-Hermian joke that any child who showed signs of interest in art, philosophy or abstract mathematics was ploughed straight back into the hydroponic farms. As far as criminals and psychopaths were concerned, this was not a joke at all. Crime was one of the luxuries that Mercury could not afford.
Venus is conveniently located with respect to Terra. Hohmann launch windows occur every 584 days (compared to every 780 days for Mars). Hohmann transfer time is about 5 months (compared to 6 months for Mars).
Venus' atmosphere is mostly carbon dioxide. This can be used to grow food. CO2 is also heavier than the nitrogen-oxygen breathing mix humans use, which means an nitrogen-oxygen filled balloon will float in Venus' atmo.
Disadvantages
The temperature at the equator is actually higher than at Mercury, 723 K (450°C). Higher than the melting point of lead and much higher than the temperatures used in hospitals to sterilize surgical instruments. This is due to the greenhouse effect, mentioned in 1950's school children's astronomy texts decades before the invention of the term "global warming".
The atmospheric pressure at the surface is about 92 times that of Terra. This is about the same as the pressure under Terra's ocean at the depth of a kilometer. Humans exposed to this will implode. The Soviet Venera 5 and Venera 6 probes only got down to 18 km above the surface before they imploded.
Venus' atmosphere contains clouds of sulfur dioxide and droplets of sulfuric acid. Which will dissolve metals at positions above copper in the reactivity series (iron, aluminium, titanium, etc.).
The winds at cloud level are about 300 km/h.
If the colony is a floating cloud city, trying to mine the surface for resources will be a nightmare.
It will work on other planets too.
Some scientists (most notably Geoffrey A. Landis of NASA's Glenn Research Center) have suggested colonizing Venus by using aerostat habitats and floating cities. In Venus' carbon dioxide atmosphere, a balloon full of a human breathable 21:79 oxygen/nitrogen mix will float. Actually it will have over 60% of the lifting power that pure helium has on Terra.
If a breathable mix balloon could loft a city to an altitude of 50 kilometers above the surface, it would find the environment to be the most Terran-like in the entire solar system. The pressure is about 1 bar (the same as at Terra's surface), temperature in the range of 0°C to 50°C, and about the same protection against cosmic rays.
Since the pressure inside and outside the balloon are about the same, any rips or tears will only slowly diffuse the gases (instead of causing the entire balloon to instantly pop). This will give plenty of time for repairs.
At cloud levels the wind blows about 95 m/s (about 300 km/h). It circles the planet in about four Terran days. A colony floating in this wind would experience a Venusian day of about four Terran days in duration. This is a vast improvement on the Venusian day on the planet's surface, which is about 243 Terran days long.
Thinking more grandly, others have suggested terraforming Venus. These include various proposals to drastically lower the atmospheric pressure and increase the levels of oxygen.
From time to time, one reads of studies promoting the concept of crewed missions to Venus. Usually this crops up as part of the perennial debate about going to the Moon, or Mars, or an asteroid, or a deep space space station, or nowhere at all.
“What about Venus?” cry the sorts of people who would jump into a Mac vs PC argument advocating Solaris while fondling a beard that reaches their knees. Reader, this could be me, except I lack the necessary hair production talent.
The basic idea is that Venus requires slightly less delta-V than Mars to get to, has a much thicker atmosphere, more solar energy, and much more frequent launch windows. Capitalizing on all that was the Soviet Venera program, which launched dozens of orbiters, landers, and balloons to Venus during the 1960s, 1970s and 1980s.
While Mars’ surface is a frozen poisonous radioactive airless hellscape, Venus’ surface is rocky, volcanic, and a mere 462 C at 93 atmospheres, supercritical CO2 atmosphere with a side of sulfuric acid. This is so hot that future rovers will depend on mechanical computers/cameras/radios, because ordinary computers will melt. Obviously, sending humans to the surface of Venus is a non-starter.
That’s okay, say Venus exploration advocate(s), we’ll have a giant airship. Somehow we’ll perform EDL at 12km/s, deploy something a hundred times the size of the Hindenburg in a couple of minutes, float around for a few months, then drop a Earth Return Vehicle (ERV) the size of a Saturn V off the bottom, light the engines, and return home.
I love this stuff. Let’s dig in a bit.
I have a future blog planned on airships, because they’re awesome. Let’s rebuild the Hindenburg but with mylar, nylon, carbon fiber, and helium. We can put a thousand people on it. It will be slow, crowded, and a human petri dish, just like a cruise ship. It will also be perilous and too far above the ground, like a plane. And awesome!
How will this work on Venus? I have no idea. I think one could make an argument that a pressure-stabilized airship deployed in space could perform entry, descent, and landing (EDL) without substantial heat shielding due to its very low ballistic coefficient. Let’s say this is possible. After a 6 month trip to Venus, the crew would then hang out in a small capsule suspended from a giant balloon. Let’s hope they like confined spaces.
Inside this balloon, they can drift on Venus’ winds around the planet while they wait for the return launch window to line up. From their perch maybe 50 km off the ground, they’ll have a great view of the sulfuric acid clouds which, when the balloon gets blown around to the night side of Venus (its days are 117 Earth days long), will rise up and engulf the balloon.
While it is true that Earth-Venus requires slightly less delta-V than Earth-Mars, the reverse is not the case. Venus is nearly the size of Earth. With an escape velocity of 10.36km, the ERV will need to be comparable in size to a Saturn V. Fully fueled, it will weigh about 3000 T, which exceeds the working load of the Hindenburg by only a factor of 300. This monster rocket will also need to be launched somehow from a balloon about the size of Manhattan. Maybe it can be dropped and then fly to the side?
Bringing a 3000 T ERV from Earth, in addition to the gigaZeppelin, is a big resource drag. Perhaps its mass could be reduced somewhat by synthesizing its oxidizer from the ambient Venusian atmosphere. If the airship lacks the propulsion to remain on the day side of the planet, the chemical plant will require a substantial nuclear reactor to provide power. Further, as the ERV’s tanks are filled, the airship will somehow have to generate more lift (thousands of tonnes more) to remain buoyant. Lifting gasses can’t be synthesized from ambient CO2 atmosphere, so we’d better make sure we bring enough helium to last the entire mission.
I’ve spent years pondering the head-scratching difficulty of getting humans to and from Mars, building cities there, and solving problems. I think it’s possible.
A human exploration mission to Venus is in another category entirely, and all to get a crew of two from a monotonous space flight to a monotonous balloon flight to a monotonous space flight home. All it requires is about a thousand times the mass relative to a Mars mission, and a generous handful of technical miracles.
Terra-Luna L1 is a good location for a way station/cargo transhipment point. From L1 the delta-V to travel to either Terra or Luna is modest. It is also a good site for an orbital propellant depot, perhaps supplied from Lunar polar ice.
Terra-Luna L2 is a good location for a communication satellite covering Luna's far side.
It is also good for transits to other planets outside of the Terra-Luna system. This is because L2 is practically at Terra escape velocity already. L2 is sometimes called the "gateway to the Solar System".
It is also an ideal location to initiate an Oberth maneuver to get some free delta-V when traveling to another planet. To do an Oberth, the ship performs a parabolic dive from L2 into a close pass by Terra, and does the burn at the closest approach. Typically an Oberth maneuver around Terra can augment the delta V by a factor of 2 to 7. A typical Mars departure requires a delta V of 4.3 km/s, doing an Oberth the ship can get 4.3 km/s by only doing 1 km/s worth of burn!
Propellant depots will also have a longer life at L2 compared to having them located in LEO. L2 has lower micrometeor levels, lower thermal stress (reducing cryogenic propellant boil off), and lower amounts of corrosive atomic oxygen.
Gerard O'Neill's original plan for a space colony had them located at L5. As a matter of fact, his O'Neill cylinder habitats are commonly called "L5 Colonies." Either L4 or L5 is a good spot since they are stable. In science fiction, often one spot or the other is claimed by rival superpowers (e.g., USA and Russia, or the various nations of Gundam).
The Kordylewski clouds may or may not occupy the Terra-Luna L4 and L5 points.
On the one hand the regolith contains valuable Helium 3, useful for fusion reactors using the 3He+D reaction. On the other hand the He3 found on the surface of Luna is so sparse that it is not worth mining unless you are absolutely desperate. 15 to 50 ppb is pathetically low grade ore.
Lava Tubes are ready-made underground caves providing shielding from cosmic radiation. Otherwise digging the caverns for an underground city would be somewhat a chore.
Thorium deposits, with the highest concentration at Lalande Crater. That is one reason why that crater is the location of choice for the first lunar colony according to the Virtual Lunar Colony Project.
Plentiful supplies of the raw material for Aluminum-Oxygen and other ISRU-Oxygen rocket fuel. Just add electricity or solar heat to separate the oxygen from the metal.
Titanium from Lunar Ilmenite ore. On Luna a "High titanium basalt" is one with more than 6% titanium by weight, it can go up to 8%. Other than Terra there are no other known sources.
Located conveniently close to Terra. Short Hohmann transit times (about 3 days) and Hohmann launch windows are frequent (every 29.5 days).
(ed note: Central City is a lunar city. It is totally underground. The "tourist dome" is a tiny glass dome on the surface where tourists can be impressed by the view.
"Conners" are lunar colonists. In this quote, there has been a moon-quake.)
Central City was built underground, a series of
lens-shaped hollows, kilometers across, known as
Sub-Bubbles. The tourist dome sat on the surface,
fifty meters directly above one edge of a lens,
connected to the interior’s ground level by a long
ramp running between the surface level and the
airlock. The city side of the airlock complex had
been designed with tourists in mind. One whole
wall was made up of huge view windows that canted
in from the ceiling toward the floor, overlooking
Amundsen SubBubble, affording a splendid vista of
the bustling city below.
Except now the view windows were shattered
heaps of glass on the ground and jagged knife-edges
sprouting up from window frames. A sooty wind
swept into the overlook chamber.
The city below looked like a war zone. Smoke
billowed up from at least three separate fires, only
to be caught in a violent wind that flattened it into
the sky blue ceiling of the bubble. Wind.
Nothing scared a Conner more than a leak.
Lucian forced the worry from his mind. Either the
repair crews were handling it or they weren’t.
Lucian’s gaze left the ceiling and he looked down at
the city again. The lush greenery that the city took
such pride in was still more or less there, but whole
garden sections had slumped over. Landslides had
carried off hillside trees.
As with the chamber itself, the wall facing
the dome interior was made entirely of glass. That
was both for the benefit of tourists and because
there was nothing cheaper than glass on the
silica-rich Moon. Whatever the reason, it left
Lucian leading twenty-eight people, most of whom
barely knew how to walk in low gee, down an incline
littered with razor-sharp fragments of glass, trying
to stay out of a howling wind that blew through
where the glass wall should have been. Somehow he
got them down without anyone slicing open an
artery.
Single-familiy lunar ecosphere. Living and sleeping rooms are underground, and the atrium is shielded by water. From The Millennial Project by Marshall Savage. Artwork by Keith Spangle.
Relatively easy to get to from Terra, compared to the asteroid belt.
Plentiful supplies of the raw material for Aluminum-Oxygen and other ISRU-Oxygen rocket fuel. Just add electricity or solar heat to separate the oxygen from the metal.
Disadvantages
They require relatively low delta-V to perturb their course into a civilzation-destroying collision with Terra. The Spaceguard will be keeping a very close watch on these. Especially 99942 Apophis.
Asteroid 3753 Cruithne is sort of but not quite at a Lagrange point. It is often incorrectly called the "second moon of Terra."
Sol-Terra L1 never has its view blocked by Sol or Terra. This makes it a good site for solar observatories as an early warning storm monitor for deadly proton storms and other solar disturbances.
Sol-Terra L3 would be a great place for a early warning storm monitor. It could spot large active sunspot regions before Sol's rotation aimed them at Terra. It would also function as the L1 early warning for any spacecraft that happened to be on the opposite hemisphere with respect to Terra. L1 and L3 as a team could provide warnings for the entire solar system.
In old pulp science fiction, Sol-Terra L3 was a popular location for "counter-Earth", a sinister planet hidden from Terran astronomers by Sol (e.g.,Gor, Journey to the Far Side of the Sun, or the home of the High Evolutionary). But now satellites and gravitational studies have revealed that there is no planet there. Which is a good thing since L3 is a gravitationally unstable position.
Asteroid 2010 TK7 occupies the Sol-Terra L4 point.
Deimos is the smaller of the two moons of Mars. In terms of delta-V cost, Deimos is the closest hydrated body to LEO. Since water is one of the most valuable in situ resources, this makes Deimos valuable. There is water ice on Phobos as well, but it is buried more deeply. On Deimos the ice is within 100 meters of the surface at the equator, and within 20 metrers at the poles.
Rob Davidoff and I worked up an entire future history centered around Deimos, called Cape Dread
The Mars-5 space probe did detect uranium and thorium on Mars.
The Martian atmosphere does contain about 2.5 percent valuable nitrogen.
Mars does have valuable water.
Disadvantages
For Hohmann trajectories originating from or heading to Terra/cis-Lunar space, Mars has the longest delay between Hohman launch windows (2 years, 1.6 months) of any of the planets in the solar system.
The atmosphere of Mars is about 99% vacuum, but it is thick enough to make pesky dust storms (lasting weeks at a time) that can cut down solar cell power to zero, and coat the solar cells with dust that has to be removed somehow.
Surface gravity is 3.7 m/s2 (38% Terra), which might be too low for health.
Resource-wise, Luna seems richer than Mars, while also having a lower escape delta-V cost.
Plentiful supplies of the raw material for Aluminum-Oxygen and other ISRU-Oxygen rocket fuel. Just add electricity or solar heat to separate the oxygen from the metal.
Universal Fabricator
X1000 3D printer from 3DP Unlimited
Universal Fabricator
In the boardgame Rocket Flight by Phil Eklund, players can purchase a Santa Claus machine if they have researched the tech cards Electrophoresis (field-dot symbol), Self-Replicating Technology (reindeer sled symbol), and Biotechnology (bug symbol). Price is 200 heat radiator equivalents. Each turn it can produce either 10 masses of radiators, 10 masses of rocket engine, 10 masses of water, or 1/20 of a new Santa Claus machine.
Robot Miner
Mobile nuclear-powered propellant-production plant. Ice is melted and electrolized into oxygen and hydrogen.Note red-hot reactor on the boom.
Ecosphere Habitat
The Genesis 2 space module. Credit: Bigelow Aerospace
Utility Vehicle
Artwork by Don Davis for Jupiter Project by Gregory Benford (1972)
Pilgrims with itchy feet and travelin' bones will head for the high frontier; wherever they find it, they'll push it back. These trail blazers, on their way to conquer new lands, will come to the Martian moons in an ever-growing stream. Like the boomers going to Saint Joe, Mo., these space settlers will outfit themselves at the 'rail-head' on Deimos. They will convert their hard-won grubstakes into tools and provisions, and strike out for the new territories. Most will head for the myriad micro-worlds of the asteroid belt. Other hardy souls will venture further afield, to the Trojan asteroids, and even the moons of Jupiter.
Many of these outbound immigrants will be moved by the simple desire to flee the cloying multitudes of the inner worlds. Others will be impelled by that unfailing motivator of mankind: greed. Settlement of the solar system will be greatly encouraged by the adoption of a Millennial Mining Law. The administrative code underpinning the Law can be complex in its particulars, but the essence of the Law itself should be utter simplicity: "First in time is first in right."
If you are the first person to reach a satellite, and stake and register your claim with the Solar Mining Office, it's yours! It is unlikely that an individual could mount a solo expedition to the asteroid belt; so you would probably have to sell shares in your venture to get the capital. At any rate, you and your partners are now the proud owners of a celestial mother lode.
Lets say you've staked your claim to an average carbonaceous chondrite in the outer asteroid belt. What's it worth? Much interesting speculation about asteroid mining has centered on those of the metallic variety.490 When one visits asteroids at the museum, it certainly appears that the nickel-iron types would be worth the most. After all, metals form the back-bone of industrial infrastructure, and their extraction and refinement is at the root of civilization. That is true enough today, but in the New Millennium, metals will be a side show. The real money is in water, carbon, nitrogen, sulfur, and the other light elements that make up the substance of animate matter. There will be claims staked on metallic asteroids to be sure, but in the first great "land rush", the savvy entrepreneurs will be after carbonaceous chondrites.
If you managed to be the first claimant on a typical smallish asteroid—10 km. in diameter—you would possess a trillion tons of the most valuable resources in the solar system. If, after paying for extraction and transportation costs, consumers in the realms of Asgard and Avallon paid an average of only one dollar per kilogram for light elements, your asteroid would be worth over one hundred trillion dollars.
There are millions of asteroids that are more than a few kilometers in diameter, and billions and billions of smaller ones. Eventually, they will all be claimed, mined, and settled. As the human race grows to maturity, filling up the solar system, the market for asteroid organics will expand continually. Any asteroid prospector can stake his claim with full confidence that eventually there will be a demand for his minerals. It may take time. But asteroid settlers will be some of the only people in the solar system who can live with near perfect self-sufficiency. They can afford to wait.
Like all pioneers, the first settlers in the asteroid belt must be hardy souls with iron wills and rawhide constitutions. They must be capable of facing isolation and deprivation; they must be able to fend for themselves; and most importantly they should be endowed with infinite faith in the future. Like Europeans headed for the California gold fields in 1849, new immigrants to the asteroid belt will flood in from the Old World. They will book their passage on the trans-oceanic vessels of their time—orbital habitats cycling between Earth and Mars. When the pioneers arrive on Deimos, they will equip themselves for their perilous expedition to the new frontier. The planetary civilization on Mars will be able to provide all the technology needed to successfully homestead an asteroid.
In all likelihood, these space pilgrims will join up in "wagon trains" for the trip out. Each band of hardy trail blazers will form their own society, agreeing among themselves on its structure and systems of self-governance.
Each family buys a launch pod and a cargo pod, both tanked up with enough fuel for rendezvous maneuvers. In addition to housekeeping basics, each adult carries the obligatory space suit— the only major piece of equipment brought from Earth. The group pools its resources to buy the essentials: a small ecosphere habitat(with CELSS), a semi-autonomous robotic miner, a pair of multi-purpose utility vehicles, a universal fabricator, and some power bubbles with thermionic generators.
The colonists arrange financing for their expedition long before leaving Earth. All the adults in the group have special skills, and like most people in the Third Millennium, they customarily work as telecommuters. In the group there are engineers, designers, writers, counselors, researchers, and consultants. All of these people work by logging on to interactive telecommunications networks. Most of their jobs are insensitive to short time delays, so they can work without regard to their location in the solar system. The data professionals in such groups have all been selected as much for their ability to work through telepresence as anything else. As telecommuters, they can continue to work in their careers despite being on their way to the asteroid belt.
This has important economic ramifications for the colonists. First, they do not face a cut off in earnings during the two years or so it takes them to reach their destination. Second, it means that they can continue to work and generate revenue after their arrival, even though otherwise isolated on a barren asteroid. This ability to participate in the general economy while physically isolated, is one of the most important factors enabling our rapid expansion into space.
InVestament Bankers
Financial institutions in the Earth-Moon system have very little interest in bankrolling colonists headed for the asteroid belt; too remote, too risky. There is, however, a ready source of funding. The first big colonial push out to the asteroids targeted the giant asteroid Vesta. Vesta orbits close to Mars and is a big asteroid with a unique and valuable composition. The original Vestans flourished, building their tiny world into a major economic force in the outer solar system. Very quickly, the Vestans realized that the highest returns could be made by financing other colonists who desired to settle the wide frontier of the asteroid belt. Psychological barriers and remoteness from the inner worlds, plus very real risks, kept home-world banks out of the game. This allowed the Vestans to charge very high interest rates for colonization loans.
The inVestament bankers understood that loans made to colonists were doubly lucrative. First, the colonists invariably consist of highly motivated groups of mature professionals. (This Darwinian selection is self-enforcing; groups not meeting the rigorous standards are simply not approved for loans.) These hardcore groups inevitably hit the ground running, and very quickly transform their new habitats into productive resource mines. The telecommuting professionals give the groups an economic underpinning which allows them to carry heavy interest burdens. New productivity from asteroid resources enables them to pay back their loans very quickly. The asteroid bankers are consequently able to turn their capital over rapidly, so the investment pool doubles in size every five to ten years. Second, each new group of colonists adds a jolt of synergy to the whole economy of the region, bringing with them demands for goods and services which can be supplied by yet other colonists.
This double-barreled effect—rapid capital turn-over plus exploding demand—creates a very powerful positive feedback loop in the economy. As the Vestans make more and more money on their loans, the investment pool grows, making it possible to make more loans, generating greater profits, in turn increasing the investment pool available for loans, etc. The result is runaway growth of real wealth.
The settlers find it fairly easy, therefore, to borrow substantial amounts of money with no more collateral than their resumes. Colonists typically head out to the edge of the new frontier with an ample stock of capital equipment and a generous line of credit at the FIBV (First Interplanetary Bank of Vesta).
Space Family Robinson
(Let's join a group of these pioneers, and go along to see what it's like to settle a virgin asteroid.)
Long before their expedition even started out, the Robinson group had targeted their bit of celestial real estate. They selected a destination only after detailed consultations with the solar mining office. They chose an asteroid of moderate size—10 km. in diameter—orbiting in the middle of the belt. This particular asteroid is already owned by its original claimant who is in residence there. The leaders of the expedition have been in radio negotiations with the old prospector and have come to terms. The new colonists have agreed to pay the owner an up-front cash bonus and a royalty of 8% on all exports.
There are still many millions of unclaimed asteroids; but this is a group of families and they don't want to face the extra risks of an unknown planetoid. The Solar mining office has conducted extensive surveys and has detailed spectroscopic information on almost every asteroid larger than a few kilometers in diameter. Little else is known about the unclaimed asteroids. By contrast, this asteroid—Sykes 1011—has been pretty thoroughly evaluated. In order to hold his claim, Sykes has been "proving up" his asteroid ever since he first staked it fifteen years before. He has done extensive exploratory drilling, made detailed assays of his cores, taken seismic readings, and otherwise scrutinized his private little world.
The old prospector's diligence has paid off. The rich data base has served its purpose and has attracted a well-heeled group of settlers, Sykes, who has lived for a decade and a half in almost complete isolation, now anticipates a rich pay day. He is going to be amply recompensed for his years of unrequited labor. The prospector's risky investment will pay rich dividends for the rest of his life.
The colonists—named for the largest family, the Robinsons— have been willing to pay a premium price for Sykes' asteroid. His certified assays show that S1011 has an especially high water content of 18%, and unusually high concentrations of tantalum, and cobalt. For extra bonus money and a higher royalty, Sykes has been willing to assign all future development rights to the Robinson group. The Robinsons have done detailed modeling of the economics of their risky venture; they have good reason to believe that they too will ultimately enjoy rich rewards.
The Robinsons launch from Deimos in a replay of their flight from Avallon. Families are catapulted off in their individual pods, and the wave riders skim across the top of Mars' thickening atmosphere, picking up a slingshot boost from the red planet's gravity well. The pods shoot off at precisely calculated trajectories to rendezvous with an orbital habitat cycling between Mars and the main asteroid belt. Unmanned cargo pods, bearing precious equipment follow. After a few days in cramped discomfort on the wave riders, the colonists rendezvous with a cycling habitat. They dock their riders and move into temporary but homey quarters in the outbound ecosphere. There they live comfortably for the 15 to 20 months it takes to reach the asteroid belt. During that time, educations, and careers carry on, without much interruption.
After the cycling habitat reaches an optimal point in its orbit, the colonists will jump off to their destination asteroid. The entire journey has been carefully timed to minimize the duration and energy requirements of this final leg. Everything has gone according to the schedule—arranged years in advance. Delays at any stage of their odyssey could have stranded the travelers at some intermediate point for years. As it is, the colonists are in a perfect position to rendezvous with their chosen planetoid. The Robinsons again board their wave riders and make the short hop to Sykes 1011, arriving at the asteroid with only a few kilograms of propellant left.
Touching down on their new world is more like docking with a giant ship than landing on a planet. The gravity is less than a thousandth of that on Earth. The little convoy sets -down in the midst of a scene of splendid desolation. The horizons of the little world crowd close, unbroken by anything but Syke's radio strobe and a hand-made banner with "Wellcum Robinsuns" spelled out in strips of gold foil.
Like the pioneers of another age—who on arrival in their new Canaans, unhitched the oxen from the wagon and immediately yoked them to the plow—this new breed of settlers also sets promptly to work. The Robinson's group leader, Dr. Zachariah Smith, meets with Sykes—a grizzled old varmint who looks four centuries out of place. Sykes has spent 15 years on the asteroid, living in an empty propellant tank buried under the regolith. He has been utterly alone except for the company of a holographic dog named Rimmer. From the musky smell inside the old prospector's digs, Dr. Smith judges that Sykes hasn't been out of his space suit in the past decade. True to form, Sykes conducts the entire closing over the upturned bottom of a supply canister, never-removing anything but his helmet. 'How in the world,' Dr. Smith wonders, looking at the old character's stained beard, 'can any one chew tobacco gum inside a space helmet?'
With legal formalities out of the way, the first order of business is to launch power bubbles. The group has brought three thermionic generators, each with enough capacity to provide all of the colony's power needs. Fuel is pooled for one of the wave riders, and the generators are towed into close polar orbits around the asteroid. This takes just a small amount of propellant as orbital velocity is only a few meters per second. Once the generators are in stable orbits outside the asteroid's shadow, the bubble reflectors are inflated around them. Properly focused and adjusted, the generators begin to crank out power. The electricity is converted to a narrow beam of microwaves and is transmitted directly to receiving antennas strung along the asteroid's equator.
Useful Materials Produced by Robotic Miner Every Day
Element
kg/day
Oxygen
1,152
Silicon
576
Water
518
Iron
430
Magnesium
403
Carbon
57
Calcium
52
Sulfur
52
Nickel
32
Aluminum
45
Sodium
23
Chromium
12
Cobalt
5
Manganese
5
Nitrogen
5
Titanium
4
Phosphorus
3
Potassium
2
Copper
0.3
With a good supply of power now at their disposal, the colonists begin to transform their Lilliputian planet. They set up and activate the mining station. The robotic augers immediately begin shunting loose regolith into the maw of the machine. Inside the miner, the soil is heated in a plasma arc furnace. As the temperature rises, steam hisses out of the hot ore, and the vapor is pulled off and condensed. When the first silver trickle of liquid water begins to dribble into the transparent collection tanks, a cheer bursts from the jubilant colonists. At this point they know they have succeeded. Their years of sacrifice and hard work have paid off. They have water. Where there is water there is life. Now they know they can survive on this orbital slag heap. They have everything they need to sustain life and build a new world.
The robotic miner is not a large machine; its throughput is only a couple of kilograms per minute. Watching powdered regolith pass through the holding bin is like watching sand trickle through a big hour glass. Even so, the machine produces over 500 kilograms of distilled water and half a ton of oxygen per day. In a highly efficient process, the crushed asteroid ore is melted and most of its usable elements extracted. The molten rock preheats the incoming ore stream and is then extruded from the miner in the form of cooled bricks, slabs, and other structural components.
The colonists garner everything they need from the asteroid. At this stage of development, the principal commodities required by the colony: power, oxygen, and water, are available in abundance.
The next pressing project is to erect a temporary habitat. The temporary structure is just a large fabric bubble with a cable net thrown over the top. The colonists hastily level the bottom of a small crater with their utility vehicles. The bubble is inflated and regolith is shoveled in to cover the whole thing three meters deep. Though palatial by Sykes' standards, it will be rough living for many months, until a proper ecosphere can be built. The colonists move into their temporary domicile, pitching their family tents inside the Spartan space. The temporary habitat is not roomy, and is harshly lit by yellow tritium bulbs. It provides a shirt-sleeve environment nonetheless. On the face of this hostile bit of real estate, adrift in the void, even this rough bubble is a welcoming haven.
Establishing a self-sustaining ecocycle to produce food and recycle wastes is now the colonist's top priority. Coils of algae tubing are deployed and an ecocycle centered on a super critical water oxidizer is organized. At this point, the colonists are dug in for the long haul.
Now they can turn their attention to raising the colony's standard of living. The first step in that direction is the construction of a proper ecosphere. The surface of the asteroid, closely resembles that of the Martian moon Deimos. It is pocked with craters of various sizes, up to a kilometer in diameter. A crater 200 meters in diameter is chosen, and work begins to transform it into a permanent ecosphere. The robotic miner forms a ring of fused regolith around the crater rim while the utility tractors terrace the inner slopes. While forming the foundation ring, the miner extrudes bulk materials and some simple finished goods like reinforcing cable and anchoring bolts.
Refined silicon and other elements are fed into the uni-fab (universal fabricator) which produces the silicone bubble membrane. The uni-fab is a remarkable piece of machinery and represents one of the colony's most expensive and valuable capital assets. The uni-fab is capable of producing virtually any material or machine component. All it requires is a supply of the appropriate raw materials and detailed design instructions for its computer.
The fabricator uses MBE (Molecular Beam Epitaxy) technology to produce parts and materials. MBE is extremely simple in concept: a beam of charged atoms is sprayed onto a substrate, not unlike painting a car. Successive layers of atoms are beamed on until the desired thickness is built up. The composition of the molecular beam can be varied at will, as can the shape and thickness of the final products. With the right materials and instructions, the uni-fab can produce anything, from ball bearings to saran wrap.
The only materials the uni-fab can't produce are living tissues. You could feed in the appropriate instructions and materials needed to form a frog, but all you would get is frog soup.
The uni-fab can, however, easily manufacture just about anything else. It could readily produce all the parts of a camera, for example. You would still have to assemble the components, but all the lenses, fittings, and tiny screws could be manufactured by the uni-fab. Depending on its design, it could be a very fine camera. All the parts would be made with a finish and precision accurate to a couple of angstroms—the width of a single atom. The uni-fab enables the colonists to be self-sufficient in virtually all manufactured products, from toys to computer chips.
While the uni-fab produces the ecosphere's dome material, work progresses on crater preparation. When the inner terraces and anchoring ring are completed, the bubble membrane is installed, and inflation of the ecosphere begins.
An ecosphere 200 meters in diameter will require about half a million kilograms of oxygen. It will take the robotic miner a little over a year to produce this much air. As the ecosphere is inflated, the crater is terraformed to provide a life-rich habitat. Trees, grass, and flowers are planted in profusion. An open stream meanders across the terraces and slowly cascades down the slopes to a small pond. A fountain sprays water in dramatic slow-motion arcs. The soft splashing of water gently falling through the micro gravity will fill the interior with the unmistakable sounds of Earth. Slowly, the robotic miner will produce enough water to form a water shield for the crater dome. When complete, the shield will allow the colonists to pitch pavilions in the gardens and live in the open, among the eight acres of grass and trees under the dome.
The Robinsons will construct the first ecosphere for somewhat the same reasons that Sykes did his core drilling—to attract new settlers. With the ecosphere completed, the otherwise barren little asteroid now beckons with the welcoming green glow of a miniature Eden.
New colonists, looking for opportunities, but less willing than Sykes or the Robinsons to face risk and hardship, will be attracted to the new habitat. This first permanent ecosphere is easily large enough for dozens of families. Several groups of immigrants join the growing colony. This third wave of settlers does not face the harsh wilderness that greeted old Sykes and the Robinsons.
These newcomers can move right in to a comfortable habitat, resuming their lives without much of an interruption. Since the hazards and discomforts are low, individual families, even single people, will be able to immigrate to the new colony.
Despite this lack of hardship, the new colonists will enjoy a large share of the asteroid's abundant wealth. The new comers will pay cash bonuses to the Robinson group. They will literally be buying a 'piece of the rock'. In return, they are supplied with dwelling space, food, water, energy, and amenities. The new arrivals also get a stake in the colony. They earn a position in the corporate identity of the colony and a share of future royalties and profits.
As more and more colonists arrive, the earlier waves grow wealthier. Sykes becomes rich as Midas, but he never does move out of his rickety fuel cylinder. The Robinson group took a big gamble and hit the jackpot. The Robinson's and the other founding families become enormously wealthy, building their own private compounds in some of the asteroid's choicest craters. For generations to come, the descendants of these pioneers will enjoy the status and bank accounts that go with "old money".
New Bern
As the growing community accrues wealth, dramatic new projects can be undertaken. The first of these will be—as on most new worlds—the construction of a mass launcher. The launcher will be built almost entirely of local materials. For example, low-temperature superconducting electromagnets can be made of Alnico—an alloy of aluminum, nickel, iron, and cobalt. All these metals are available on the asteroid. Ultra-low temperatures can be maintained in the magnets by shielding them from radiant heat under a blanket of vacuum insulated regolith and by circulating liquid hydrogen at -252°C. Once the mass driver is complete, the asteroid colony can begin to export commodities profitably.
There will always be an insatiable demand for water and other light elements back in the Earth-Moon system, but importing hydrogen from the asteroids will not be cheap. It requires a change of velocity (Δv) of 11 kilometers per second (kps) to move payloads from the inner asteroid belt to the Earth's orbit. That is the same Av required to lift payloads off the Earth. This fact will put a premium on the cost of living in the vicinity of the Earth. Escaping this cost penalty will be one of the motivations fueling immigration to the asteroid belt. In the self-sufficient colonies of the asteroids, the cost of living will be attractively low. There will always be people willing to pay the premium to live near the Earth, however; so the thirst for hydrogen from the asteroid belt is apt to remain unquenchable.
The colonists on Sykes 1011—now renamed New Bern— produce elemental hydrogen which they liquefy and hurl into space in vacuum insulated canisters of chromium cobalt alloy. The canisters need not be propelled to 11 kps—a very energy intensive proposition. Instead, they are impelled at a few tenths of a kps onto an orbital path that rendezvouses with the large asteroid Ceres. On Ceres there is a large interplanetary mass driver with huge cargo capacity. Hydrogen, metals, and other commodities from all over the asteroid belt are consolidated into bulk shipments. Big cargo carriers are flung off on journeys to the inner planets that can take years. The colonists' shipments of hydrogen, vitallium and other commodities are automatically credited to their accounts on Vesta.
The economy of New Bern thrives. Underpinned by the work of telecommuters, and supplemented by commodity exports, the colony grows richer. The colonists invest heavily in semi-autonomous factories. Highly specialized products are manufactured for niche markets all over the Solar system. The colonies on New Bern specialize in precision medical instruments and implants. Their vitallium endoskeletons come to be highly prized by people going through trans-geriatric metamorphosis.
New ecospheres spring up. All the best crater sites on the asteroid are domed over. As new immigrants arrive and children are born, the population burgeons. There is no shortage of room on the asteroid. It seems a tiny world, but it is big enough to accommodate a large city. The surface area of the asteroid is 314 million square meters. That is enough room for a population of three million people. It's hard to fathom, but even this many colonists wouldn't be crowded. Each person would have as much room as the marine colonists on Aquarius, where almost 40% of the area is dedicated to park land and open space. The same ratios would apply on the surface of the asteroid. Half the surface area could be dedicated to gardens, lakes, playing fields, and other open spaces, and there would still be ample room for a large population. All the industry, and much of the colony's supporting infrastructure, is put underground. The surface is left free for living.
Eventually, the whole surface of the asteroid is enclosed inside an ecosphere. With a membrane surrounding the asteroid, the whole surface can be terraformed and inhabited. Lush plant life will cover the asteroid's surface. People will live in their pavilions, set among the trees and flowers blanketing the once barren landscape.
A water shield for an ecosphere 12 kilometers in diameter would weigh 2.25 billion tons. This would require just over two percent of the asteroid's water supply. Inside the bubble membrane will be an oxygen atmosphere amounting to 86 million tons—requiring only a tiny fraction of the asteroid's oxygen.
The ecosphere will provide a tremendous volume of livable space. At some places, the asteroid's 'sky' will be two or three kilometers high. Trees will be able to grow thousands of meters tall, dwarfing even the Never-trees in the craters of the Moon.497 In the minuscule gravity, flight will be almost effortless. As in Lothlorien, many people will live in the branches and hollow trunks of the gigantic trees. Swiss Family Robinson will have come full circle.
As mining progresses, the asteroid's interior will become honeycombed with caverns and tunnels. Robotic miners will cut through the rich carbonaceous ore of the planetesimal like termites boring through fruit cake. Even after the asteroid is fully enclosed in an ecosphere, mining will continue deep in the interior. Exports will be spit out through rigid magnetic launch tubes that penetrate the outer shield membrane. Over time, the interior of the asteroid will be hollowed out and terraformed.
A large fraction of the asteroid's bulk will be converted into the living substance of people, plants, and animals. Every kilogram of water or metal ever removed from New Bern will be found somewhere in the solar system: bound up in the radiation shield of some other colony, rustling in the leaves of a tree, or coursing through the veins of a child. Nothing will be wasted, but everything will be transformed.
Over time, New Bern will mature into a vibrant miniature world. It will possess a unique history and culture all its own. The process that creates New Bern will be played out all over the asteroid belt at various times. The transformation of the belt will begin in the inner zones closest to the Sun and will proceed apace until the remotest asteroids have been settled, encapsulated, and terraformed. As the human population grows, each planetesimal will become the center of an expanding community, nourished and sustained by its asteroid's resources. As Solaria blossoms and ripens, the entire asteroid belt will become thickly sprinkled with free-floating ecospheres and terraformed asteroids.
From The Millennial Project by Marshall Savage (1992)
Tour of Our Terraformed Solar System: The Asteroids
Ah, the asteroid belt. There’s not a lot to see here; the view out of our windows as we arrive looks about as empty as everywhere else. And yet, this bleak void is the birthplace of humanity’s space colonization efforts. These boring space rocks were gold to the early spacefarers – well, platinum to be specific.
The Early Mining Colony
We set down in a hollow asteroid barely a thousand years after humanity first began to explore the void. Even now, we’re traipsing about in a tourist trap. The mineral resources and strategic location of this rock are a thing of the past; the cramped living quarters and maintenance tunnels are packed with floating tourists from Earth and Mars.
The tour guide tells us that “colonies” such as this weren’t that impressive at first; just temporary quarters for highly-paid remote-mining equipment operators. (A bit of a gender politics question: men are overwhelmingly overrepresented in very high-risk occupations, and suffer far more work-related injuries. In a (presumably) much more egalitarian future, will this still be the case? What will the gender breakdown of the early asteroid miners look like? Just one of those fun questions sci-fi writers get to answer.) Over time, the living space grew and the meager stations evolved into full-fledged communities. Yet even now, only a handful could be considered comfortable or urban – and only the largest bother producing their own centripetal “gravity.” We travel through the large common area on guide ropes strung between rooms. We could “free-fly” in this low-gravity environment, like the ancient miners did, but the last thing the station managers want is a bunch of landlubber tourists with no sense for gravity-free environments literally bouncing off the walls.
Traveling In Style: Inside an Asteroid
We’re done with this tourist trap; there’s more than one asteroid colony, and we’re sick of hearing tour-guides talk about the “ancient space miners” – we want to see some real mining in action. And if you want action these days, you head to Vesta.
How are we getting there? Well, we could just take our spacetimeship, but while we’re here in the asteroid belt, we might as well see what it’s like to travel in an actual asteroid. Eventually we find what we’re looking for: a colossal, spinning stone cylinder with a huge docking port on one end. We transmit credit information, fly through a series of airlocks, and find ourselves in a vast green-and-blue tube. We’re in a spinning paradise where travelers en route to Vesta can enjoy a quiet stroll through the garden, or gaze up at the “stars”: overhead streetlights and lanterns. The gravity is low-tech and the ride is slow, but nothing beats a hollowed-out asteroid for safety (putting half a mile of solid rock or ice between you and the radiation-rich void of space is a good idea for a lot of reasons), efficiency (carving out the middle of an asteroid and throwing an airlock on the top of the hole is a lot easier than constructing a starship from scratch – plus, you can sell all the platinum you just dug out"), and luxury (did I mention the view? The view of a tiny garden world curving all around the horizon is impressive, if a bit disorienting. Halo players may have a feel for what this looks like.).
Getting a Glimpse of Vesta
When we visited Mars, newswaves were abuzz about the Vesta (4 Vesta is the second-most massive asteroid in the Asteroid Belt, and only one of two with a differentiated metal core: it has an outer rocky layer covering a deliciously lucrative metal center.) project. And now, gazing at the camera monitors that pass for windows here, you see why. You’re witnessing the largest-scale mining operation in the history of mankind: the complete disassembly and processing of Vesta’s metal-rich core. It’s an unfathomably vast reservoir of raw metal, but considering the scale of some of humanity’s recent undertakings,(enormous solar panels near the Sun, colossal space stations orbiting Earth like extra moons, generation ships for traveling to a recently-discovered Earthlike planet many light-years away, etc.) it’s only just enough.
We dock at a half-asteroid space station with a good view of the action, and chat up some miners over dehydrated ice cream sandwiches. They’re really more like remote-control robotics operators and zero-G detonation experts than miners; actual humans almost never set foot on half-disassembled Vesta itself. Most of the personnel here are international observers, safety bureaucrats, heritage engineers extracting and safeguarding Vesta’s old colonies, and protesters from HACS: the Historical Asteroid Conservation Society. As we chat, we see bright flares in the distance. The miners fill us in: these are carefully positioned detonations for weakening and blasting away Vesta’s crust, and shuttles firing their engines to intercept any large pieces that drift past the perimeter control drones.
Skipping Ahead to Full Terraforming
It’s been a fun trip so far, but nothing in the current asteroid belt seems terraformed per se; some of the hollow asteroids are filled with little scraps of wilderness, but they’re more like terrariums (Terrarriums are exactly the name Kim Stanley Robinson gives these hollow-cylinder asteroids in his novel 2312. This novel wasn’t the first to feature mobile, Earth-like asteroid habitats, but it arguably discusses them with the most rigor and detail.) or zoos than whole worlds with ecosystems. (The lack of natural sunlight doesn’t help matters.) Even Ceres, largest and most planet-like of the belt asteroids, is too small for meaningful terraforming; there’s a large dome city and a few low-gravity skiing resorts, but nobody expects that it will ever resemble Earth in any meaningful way.
We’ve traveled space long enough – it’s time to travel, well, time. Let’s visit a small asteroid colony in the far-distant future. Skeptics, are you ready to be pedantic and annoying? Because we’re going to a blue-and green EARTH-LIKE asteroid. Sorry, but we’re going there. On the other hand, if you like The Little Prince or Super Mario Galaxy, this is the trip for you.
It’s the distant future’s distant future. The current biohacking trends make humanity nearly unrecognizable. Being entirely blue is in fashion now; last year it was scales and prehensile hair. Impossibly large solar collectors ring the sun… mostly as relics, since everyone uses direct matter-to-energy fusion cells now. We’ve passed a number of ships that look like ancient sailing vessels, complete with a full crew on deck. It’s hard to tell whether they’re air-agnostic androids or if the ship is surrounded by a pocket of air held in via an invisible shield. It looks like these “sailing” ships, the space whale, and dozens of other oddities that hardly appear spacefaring to our ancient eyes are headed to the same place we are. TerraTwin Corporation has invited the whole Solar System to witness the unveiling of their latest vanity project: the smallest-ever fully habitable Earth!
They have the resources, the talent, the power, and most importantly, the tech. Gravity is now bound to humanity’s leash. (A staple for most space-based sci-fi, even the near-future and semi-low-tech settings (for example, Firefly and Battlestar Galactica) have largely mastered gravity. The science is a bit iffy, but less impossible than FTL travel. Simple action-at-a-distance gravity control is possible if we combine a complete understanding of gravity with cheap fusion power; if we’re lucky, this could happen less than a century from now.) This has a number of bizarre implications, and we’re about to see the latest example. The company de-lenses the light just outside the port window, revealing… the Earth. Well, a version of the Earth that’s barely ten times the size of your ship.
It’s a legacy model; Greenland and Antarctica are white with what looks like real snow (the snowman on Greenland is a nice touch). Small cottages dot the tiny “continents” where the major cities would be: the vacation homes of ultra-rich celebrities and TerraTwin executives.
We’re allowed to land – because hey, who’s going to say no to time travelers (You have such nice, loving grandparents; it would be a shame if they’d never met.) – and we find the world to be both gorgeous and disorienting. This place is NOT for the agoraphobic; the horizon falls away much too quickly, giving the sensation of being atop a hill with nothing but space below. The gravity and the sky seem exactly Earth-like, but as you pick up the Rock of Gibraltar and give it a throw, you see it follow a bizarrely curved trajectory – it disappears behind the horizon before you can see where it landed.
More curious is the Sun. We’re in the far reaches of the Asteroid belt, yet the sun looks as big and bright as it does on Earth. Now the little moonlet we saw orbiting this miniature Earth makes sense: it’s an orbiting spotlight – an artificial sun. After all these years, humanity has decided to spite Galileo and prove Aristotle right. (Aristotle’s heliocentric theory of the solar system (whereby the sun and all planets orbited the earth) was so influential that it even became enshrined in Catholic doctrine. Galileo was put under house arrest until he died when he spoke out against this theory.) This fake sun orbits in such a way that it covers up the actual sun (two suns would break Earth canon, you see).
The asteroids may be barely-noticeable space grit in the 21st century, but their mineral wealth (mostly their abundance of platinum-group elements, which are exceptionally rare on Earth) and accessibility predestines them to undergo the Solar System’s most remarkable transformations. Over the centuries, they will be mining outposts, military bases, tourist traps, enormous hollow ships, quaint homesteads, impossible-looking cities, and even gardens.
Strategic Location could make it a transport nexus to send mineral resources to Mars, Luna, and Terra.
Large deposits of valuable water ice (possibly up to 200 million cubic kilometers of water) coupled with a very low escape velocity (514 m/s) make it a useful source water, hydrogen, and oxygen; as well as an orbital propellant depot. Ceres might have more fresh water than Terra (but Terra has far more brackish salt-water).
Low gravity well makes delta V cost of coloniziation lower than all planets and most moons (including Luna).
A colonized Ceres could assist with the colonization of the Jovian moons, or other outer solar system objects.
Ceres' orbit has a greater semi-major axis than Mars, so it has much more frequent Hohmann launch windows to/from cislunar space (every 1 year, 3.3 months) than Mars does (every 2 years, 1.6 months). Of course the transit time is higher (cislunar-Ceres 1 y, 3.5 m; cislunar-Mars 8.5 m), and delta V cost is higher due to Ceres' orbital inclination (cislunar-Ceres 9,477 m/s; cislunar-Mars 5,748 m/s).
Disadvantages
Solar power available at Ceres aphelion is 150 W/m2 (1/9th power available at Terra, 1/4th power available at Mars). Which is very low but still workable.
Ceres has no magnetic field to ward off cosmic rays. Colony will require shielding and/or be buried underground.
DUTCH CERES
(ed note: in the novel asteroid Apophis scores a direct hit on Terra in 2036. Terra becomes increasingly uninhabitable, and there is a mass exodus to solar system habitats)
Changes to the planet’s environment, resulting from widespread deforestation and urbanization, the introduction of pollutants to the atmosphere, and so on, compounded to unbalance the climatological system, such that Earth’s weather patterns became increasingly unpredictable, the variations swift and violent.
I’d seen erratic weather and the results of climate change firsthand. Long before I was born, the sea levels rose high enough that the waters swallowed whole nations. When the sea reclaimed the flatlands, the Dutch became homeless. A flotilla of seagoing vessels followed the court of King Pieter on his decommissioned cruise liner for years. In the late 21C, with the death of his father, the heir apparent King Christian had purchased a number of castoff NASA reusable launch vehicles and migrated to Ceres, the largest rock in the asteroid belt, which he claimed as the new Dutch homeland. They were a strange, foul-smelling crew, the Dutch belters, but they always threw the best parties, and always had the best stuff to smoke.
(ed note: Protagonist Malefant wants to mine the Near Earth Object 3753 Cruithne. For complicated reasons an automatic or teleoperated system won't work. So Malefant genetically engineers a squid for intelligence, and sends it in a closed ecological system, a miniture ocean. There the squid can operated mining equipment.
This works amazingly well, but the experiment gets out of hand. Turns out the squid was gravid, and had babies. Some of which were even more intelligent than her. This comes as a shock to Malefant and his team. The life support system was expected to collapse about now and the squid would die. Now it will kill off all the squid offspring as well.
The news media on Terra find out about the squid offspring. The public think the space squids are adorable. Malefant realizes they have a public relations nightmare on their hands if all the squid die. Malefant and his team figure out how to expand the squid habitat using material harvested from the asteroid. And teach the squid how to construct and maintain it. The squid colony grows and thrives.)
When the squid made their next surprising request Malenfant and the others held a council of war on the O'Neill's meatware deck. Cornelius Taine, as ever, was hostile to any form of rapprochement with the squid beyond what was absolutely necessary to maintain their base on this asteroid. "So they want to leave. Good riddance. They shouldn't be here anyhow. They weren't in the plan." Emma said severely, "You mean they should be dead." "I mean they shouldn't exist at all. The plan was for one squid to live long enough to bootstrap the operation here, that's all—not this whole new enhanced species we have to contend with. Dan Ystebo should be prosecuted for his irresponsibility—" "You aren't helping, Cornelius," said Malenfant. "Let them split off their chunk of rock and go. We don't need them."
"The point is, they are asking us where they should go. Another NEO, the asteroid belt." Cornelius's face worked. "That ought to remain… secure." Emma laughed. "Secure? Secure against what?" Cornelius was growing angry. "We could be remembered as the ultimate suckers. Like the Native Americans who sold Manhattan for a handful of beads." "The asteroid belt is not Manhattan," Malenfant said. "No. It's much more. Vastly more…" Cornelius started to list the resources of the Solar System: water, metals, phosphates, carbon, nitrogen, sulfur, rattling through the asteroids and the ice moons of Jupiter and the atmospheres of the giant planets and the Oort Cloud. "Take water. Water is the most fundamental commodity. We think the main-belt asteroids could contribute about half the water available on Earth. And a single ice moon, say Jupiter's Callisto, has around forty times as much water as Earth's oceans. Even if you exclude the Oort Cloud the Solar System probably contains something like three hundred times Earth's water—and almost all of it locked up in small, low-gravity, accessible bodies.
"The Solar System may be able to sustain—comfortably, conservatively—as many as a million times the population of the Earth." He watched their faces. "Think about that. A million human beings, for every man, woman, and child alive now." Emma laughed nervously. "That's… monstrous." "Because you can't picture it. Imagine how it would be if the human race reached such numbers. How often does an authentic genius come along—an Einstein, a Beethoven, a Jesus? Once a millennium? We could cut that down to one a day." "Imagine a million people like me," Malenfant growled. "We could have one hell of an argument." "Those cephalopods are ferocious predators, and they breed damn fast. If they start propagating through the Solar System they could take it all in a few centuries." "If the cephalopods are better adapted," Malenfant said easily, "and maybe they are—that's why we chose the squid solution in the first place—then maybe that's the way it's supposed to be." "No," Cornelius said, muscles in his cheek working. "This isn't simple Darwinism. We created them." "Maybe that will turn out to be our cosmic role," Emma said dryly. "Midwives to the master race."
Malenfant growled, "Look, let's keep Darwin and God out of it. Cornelius, face the facts. We don't have a real good handle on what the squid are going to do here. They seem to be split into a number of factions. But some of them at least seem to be determined on carving off a chunk of this rock and going someplace. Population pressure is ensuring that. If we deceive them—if we try sending them off to freeze in the dark—and they survive, they aren't going to be too pleased about it. And if we don't give them any clear guidance…" Emma nodded. "Then they'll seek out the one place they know has the water they need." Cornelius said, "We can't let them find Earth."
"Then," Malenfant pressed, "where?" Cornelius shook his head, pressured, frustrated. "All right, damn it. Send them to the Trojan asteroids." Malenfant looked at him suspiciously. "Why there?" "Because the Trojans cluster at Jupiter's Lagrange points. By comparison, the belt asteroids are spread over an orbit wider than that of Mars. So it's easy to travel between the Trojans. And we think they sometimes exchange places with the outer moons of Jupiter. You see? That means that access to Jupiter orbit from the Trojans—energetically speaking—is very cheap. While the asteroids themselves are rich." Cornelius shook his head. "My God, what a Faustian bargain. We think the asteroid mass available in the Trojans is several times greater than that in the main belt itself. Not only that, they seem to be supercarbonaceous." "What does that mean?" "They're made of the same stuff as C-type asteroids and comet nuclei. Like Cruithne. But in different, more volatile-rich proportions(means there is lots of water and other valuable gasses). It was cold out there when the planets formed. Cold enough for the lighter stuff to stick." Malenfant frowned. "It sounds like a hell of a piece of real estate to give away." "That's what I've been trying to tell you," Cornelius said. "Some of us think the Trojans might prove to be the richest resource site in the system. So surely even a species as fecund as the squid is going to take some time to consume them all. And even when they're done they may choose to go to Jupiter and its moons rather than come back in toward the sun."
Malenfant growled, "I see your logic. We're giving them a big territory, enough to occupy them for centuries." "Time enough for us to do something about it," Cornelius said tensely. Malenfant looked at Emma. "What do you think?" She shrugged. "Geopolitics are beyond me," she said. "This is beyond geopolitics," Cornelius said. "We're playing games with an opponent of unknown potential, over the future of the species." "We'll tell them to aim for the Trojans," Malenfant said, relieved the decision was made. "Cornelius, start working on trajectory information…"
As a power source. 2.0 × 1013 watts potential between Jupiter and Io.
This can be harvested with electrodynamic tethers.
Alternatively, you mount microwave beamers on copper rods and launch them from Io at Jupiter. As the rods cut the magnetic lines of force they generate electricty. This is converted into microwave and beamed back to Io. Rod is destroyed when it hits Jupiter, but so what, they are cheap.
For transportation
For spallation of useful elements into needed isotopes
Jupiter's radiation belt is about a million times more intense (and deadly) than Terra's Van Allen radiation belts. Europa, Io, and Ganymede are inside the radiation belt, Callisto is outside.
Jupiter's Radiation Belt
L,Rj is orbit in units of Jupiter Radii (71,398 km)
Dose in units of rads per day (1 Rad = 0.01 Gray)
Lines are for dosage behind radiation shield of 0.27, 1.0, 2.2, and 5.0 gm/cm2
Callisto is at Rj = 26.4, outside of the belt
click for larger image
Laser carve out 100 M. blocks of ice on Callisto. The mass drive launches them towards the inner solar system.
From The Millennial Project by Marshall Savage. Artwork by Keith Spangle.
Manned exploration of Jupiter and Radiation hazard
Here's a quick analysis for planning and realism purposes for manned exploration of Jupiter's Galilean satellites:
Satellite
Daily radiation rate (Sv)
Yearly rate (Sv)
Single-year limit
5-year cumulative limit
Mild sickness
LD 10/30
LD 35/30
LD 50/30
LD 60/30
LD 100/14
LD 100/7
LD 100/2
Io
36
13149
2 min
4 min
20 min
40 min
1.33h
2 h
2.67h
4 h
6.67h
33.33h
Europa
5
1972
13.33 min
26.66 min
2.22h
4.44h
8.89h
13.33h
17.78h
26.67h
44.44h
-
Ganymede
0.08
29.22
15h
30h
6.25d
12.5d
25d
37.5d
50d
75d
-
-
Callisto
0.0001
0.037
1.37y
2.74y
-
-
-
-
-
-
-
-
The single year limit is 50 mSv, while the maximum 5-year cumulative exposure is 100 mSv (or 20 mSv per year). LD stands for Lethal Dose, LD x/y means "x" percent of individuals die within "y" days. LD 50/30 thus means half of people exposed at this level of radiation would die within 30 days. Some values have been omitted as the time required to reach the lethal dose level exceeds the time for lower lethal dose rates to be achieved or, in the case of Callisto, because it would simply be unreachable with the low radiation rate observed.
A few observations point to the obvious:
Astronauts on Io would experience fierce radiation flux, reaching their maximum cumulative radiation dose accepted by various safety regulations for a period of 5 years in only 4 minutes outside on the surface!!! Europa isn't much better, with less than half an hour of exposure. Ganymede is also a fierce environment, despite radiation being much less intense than at Io. With minimal shielding, Callisto would provide a safe working environment no worse than a nuclear power plant or research facility.
For shielding purposes to limit exposure to below regulatory levels for 5-year periods, the number of halving thickness of shielding material stands as follows:
Satellite
Number of shielding layers
Liquid water thickness
Io
20
3.6 m
Europa
17
3.06 m
Ganymede
11
1.98 m
Callisto
1
18 cm
As ice is less dense than water, about 10% more would be required.
The Jupiter Trojan asteroids are composed of the Greek node at L4 and the Trojan node at L5. Surveys suggest that counting asteroids with a diameter of two kilometers or more, the Greek node contains 6.3 ± 1.0×104 and the Trojan node contains 3.4 ± 0.5×104. The largest trojan is 624 Hektor of the Greek node, with a average diameter of 203 ± 3.6 km.
The Hilda familiy are asteroids sort of in L3. They are actually in a 3:2 mean-motion resonance with Jupiter. There are about 1,100 known asteroids in the familiy, with the largest being 153 Hilda with a diameter of 171 km. 153 Hilda is a carbonaceous asteroid.
Nitrogen for fertilizer from Titan's Atmosphere. The stratosphere is 98.4% nitrogen, the only dense nitrogen-rich atmosphere in the Solar System outside of Terra.
The atmosphere of Saturn is a rich source of Helium-3, valuable as fuel for fusion reactors using the 3He+D reaction. It can be harvested by atmospheric scooping.
Jupiter is closer to Terra and has 3He as well. But Jupiter's gravity is fierce! If the scoopships used solid core nuclear thermal rockets they'd need a whopping mass ration of 20 to escape back to orbit (43 km/s delta V). They wouldn't be able to carry enough 3He to be economical. Saturn on the other hand has a much lower gravity. NTR scoopships could manage with a mass ratio of 4 (26 km/s delta V), which is much more reasonable.
Tanker ships would need only 18 km/s delta V to travel from Saturn to Terra.
I worked up a sketchy future history centered around Saturn, called Ring Raiders.
According to Robert Zubrin, terraforming Mars could require large crashing ice asteroids onto its surface. The farther out the asteroid's orbit is from the Sun, the less delta V is required to re-direct it to Mars impact. Saturn would do nicely. Most of the ring fragments are solid ice, and Saturn is quite far from the Sun. And you can be quite sure that the Spaceguard will closely monitor the operation.
From an author's standpoint, civilization in Saturn's rings would resemble a classic Niven-like "Belter" asteroid civilization.
According to Jerry Pournelle in a gas giant's system of moons, Hohmann delta V requirements are quite reasonable. This contrasts with the excessive Hohmann requirements for, say, travel among the asteroids. Crude NERVAs using various ices as reaction mass work just fine. Indeed, in the outer moons, a backyard kerosene rocket will do. Most of the Saturnian moons are almost entirely composed of ices so there is plenty of reaction mass for a fleet of ships.
Hohmann transit times are relatively short, as are synodic periods of launch windows.
Gas giants are also pretty far away from Terra, to encourage wars of liberation and local autonomy or other entertaining events that ordinarily Terra would put a stop to.
While Jupiter is closer, it also has a nasty radiation belt. Saturn doesn't. Saturn's radiation belt is far weaker than Jupiter's blue glowing field of radioactive death, being more on par with Terra's Van Allen belt. This would mean that the various moons of Saturn could be independent nations, fighting each other over "whatever" without having to worry about interference from Terra.
From an author's standpoint, Saturn and its moons have all sorts of anomalous weird features that can be inspirations for novels and short stories.
According to Pournelle in a gas giant's system of moons, Hohmann delta V requirements are quite reasonable. This contrasts with the excessive Hohmann requirements for, say, travel among the asteroids. Crude NERVAs using various ices as reaction mass work just fine. Indeed, in the outer moons, a backyard kerosene rocket will do. Most of the Saturnian moons are almost entirely composed of ices so there is plenty of reaction mass for a fleet of ships.
A backyard kersosene rocket (exhaust velocity 3,330 m/s) with a mass ratio of 2 will have about 2,300 m/s of deltaV, mass ratio of 3 will have 3,660 m/s, and a mass ratio of 4 will have 4,620 m/s. As you can see this could easily do almost half of the possible trips.
A NERVA rocket using water as reaction mass (exhaust velocity 4,042 m/s) with a mass ratio of 2 will have about 2,800 m/s of deltaV, mass ratio of 3 will have 4,440 m/s, and a mass ratio of 4 will have 5,600 m/s.
A NERVA rocket using hydrogen as reaction mass (exhaust velocity 8,093 m/s) with a mass ratio of 2 will have about 5,600 m/s of deltaV, mass ratio of 3 will have 8,890 m/s, and a mass ratio of 4 will have 11,200 m/s.
Hohmann transit times are relatively short, as are synodic periods of launch windows.
The table below was generated by Erik Max Francis' Hohmann orbit calculator. They are for one-way trips to various moons in the Saturn system.
LEGEND
Start and destination moons are labeled along axes, it does not matter which axis you use for start or destination.
In both sections, "y" means "years", "m" means "months", "d" means "days", and "h" means "hours"
Values below the diagonal in blue: First value is delta V (meters per second) needed for a Hohmann transfer from orbit around one world to orbit around the other, landing on neither. Second value is the transit time for the transfer.
Values above the diagonal in red: First value is delta V (m/s) needed for a Hohmann transfer between the worlds, including take-off and landing (If either is a gas giant, a 100 kilometer orbit is used instead of the planet's surface). Second value is the Synodic period (i.e., frequency of Hohmann launch windows).
Diagonal values in gold are delta V (m/s) needed to take off from the surface of a world and go into circular orbit around it, or to land from a circular orbit.
Epimetheus
Janus
Mimas
Enceladus
Tethys
Dione
Rhea
Titan
Iapetus
Epimetheus
15
72 1405d, 13h
1,521 2d, 16h
3,156 1d, 10h
4,374 1d, 2h
5,552 22h
6,768 20h
9,230 17h
8,481 17h
Janus
17 8h
26
1,515 2d, 16h
3,149 1d, 10h
4,368 1d, 2h
5,546 22h
6,762 20h
9,224 17h
8,475 17h
Mimas
1,428 10h
1,416 10h
92
1,676 3d, 1h
2,943 1d, 21h
4,188 1d, 11h
5,514 1d, 5h
8,302 1d, 0h
7,703 23h
Enceladus
3,044 12h
3,031 12h
1,490 14h
112
1,384 5d, 0h
2,653 2d, 18h
4,077 1d, 23h
7,249 1d, 12h
6,827 1d, 9h
Tethys
4,121 15h
4,108 15h
2,617 17h
1,023 19h
258
1,568 6d, 2h
2,969 3d, 6h
6,422 2d, 3h
6,132 1d, 22h
Dione
5,216 19h
5,203 19h
3,780 21h
2,217 1d
971 1d, 4h
333
1,891 6d, 23h
5,559 3d, 7h
5,391 2d, 20h
Rhea
6,340 1d, 4h
6,328 1d, 4h
5,016 1d, 6h
3,553 1d, 10h
2,297 1d, 13h
1,116 1d, 19h
422
4,565 6d, 7h
4,469 4d, 19h
Titan
7,367 3d, 9h
7,355 3d, 9h
6,369 3d, 12h
5,292 3d, 16h
4,321 3d, 22h
3,371 4d, 5h
2,276 4d, 20h
1,832
3,977 19d, 23h
Iapetus
8,104 14d, 22h
8,093 14d, 22h
7,258 15d, 3h
6,359 15d, 11h
5,523 15d, 19h
4,698 16d, 8h
3,681 17d, 6h
1,736 21d, 20h
360
Titan
Titan is the huge moon of Saturn with at atmosphere even denser than Terra. A person cannot breath it since it is 98.4% nitrogen, but that atmosphere makes it about an order of magnitude easier to establish a colony compared to, say, Mars. With respect to Mars the main drawback to Titan is the longer transit time for the colonist with the accompanying increased radiation exposure.
Advantages
Denser atmosphere than Terra (surface pressure 1.45 atm) makes Titan easier to colonize than Mars or any airless moon. High pressure makes construction easier, and the atmosphere provides plenty of radiation shielding from cosmic rays.
Nitrogen for fertilizer from Titan's Atmosphere. The stratosphere is 98.4% nitrogen, the only dense nitrogen-rich atmosphere in the Solar System outside of Terra.
Radiogenic argon in Titan's atmosphere indicates the moon contains radioactive ores. Unfortunately current planetary models indicate such ores are buried under hundreds of kilometers of ice and water. But they are there if the colonists get desperate.
Chemical Power
While the atmosphere contains methane and it rains ethane into the hydrocarbon seas, the sad fact of the matter is there is no oxygen to burn with these fuels. Electrolysis can produce oxygen, but more energy is needed for that than you will get from hydrocarbon burning. A net loss of energy, so what's the point? Oxygen can also be produced by growing plants, but natural plant photosynthesis is so inefficient it will still be a net loss. Unless you do some serious genetic engineering on the plants.
More promising is the fact that Titan's atmosphere is almost 0.2% hydrogen, and there are traces of acetylene. These can be extracted from the atmosphere using low energy methods. The hydrogenation of acetylene is a splendidly exothermic reaction that produces 376 kJ/mole of energy. If the acetylene is too scare, it is possible to produce the stuff by the pyrolysis (heat it up real hot, 1000°C) of the abundant atmospheric methane (1.4%). This takes energy, but less than the energy produced by hydrogen-acetylene reactions.
It is also possible to hydrogenatize nitrogen into ammonia. This only produces a paltry 92.4 kJ/mole of energy. On the other hand the atmosphere is 98.4% nitrogen so you ain't gonna run out of that. Both gases can be easily extracted from the atmosphere with low energy methods. And 92.4 kJ/mole of energy is far better than nothing.
Hydropower
Titan has abundant lakes and seas of methane/ethane which can be turned into hydropower (methanopower?) with just a dam, a turbine, and a generator intercepting the flow downhill. The main problem is the lakes and seas are in the polar regions, and they are apparently topographically lower than Titan's lower latitudes. Neither water nor methane will flow uphill, not when they are liquid at any rate. There might be some spots where it will work but it will require much more high-resolution topographical data that we currently have. If not, the topography may have to be adjusted, say with a few precisely sited nuclear explosives.
The report gives an equation for hydropower power generation, given density of the fluid, gravitational acceleration, flow rate, height difference, and efficiency of the turbine. Assuming an efficiency of 0.85 and a height of 145 meters, a Terran hydropower system will produce 97 megawatts while a Titan methanopower system will produce about 9 megawatts. If the Terran system was fed by Lake Superior (with it never being replenished) it would produce 1×1019 Joules total energy over 3,450 years. If the Titan system was fed by Kraken Mare it would produce about 4.6×1019 J total energy over 242,580 years.
Wind Power
Titan's atmospheric density is five times higher than Terra (good for wind power) but the average winds speeds are about 0.025 of Terra (bad for wind power). At Titan's ground level wind speeds average 0.5 to 1.0 m/s, while on Terra they are more like 20 m/s. The report gives an equation for wind power generation. Assuming a turbine rotor diameter of 90 meters, a Titan windwpower plant would produce a meager 3.2 kilowatts while the same plant on Terra would produce more like 5,000 kilowatts (5 megawatts).
Titan's wind speeds are about 2 m/s at an altitude of 3 kilometers, and 20 m/s at an altitude of 40 kilometers. If you had your windpower plant on a blimp or a tethered balloon the plant would crank out hundreds of megawatts due to Titan's denser atmosphere.
Solar Power
Solar power on Titan is savagely punished by the tyranny of the Inverse Square Law, but it is still viable. Barely. Since Titan's distance from Sol varies from 9 to 10 astronomial units, the solar flux reaching Titan is from 1/81th to 1/100th of what reaches Terra. Another annoying aspect is the steady drizzle of tholin crap raining down on the solar panels. This reddish-brown sticky mess will have to be periodially scraped off. Tholins are the reason Titan's atmosphere is orange and murky.
At the top of Terra's atmosphere the average solar energy is about 1,400 J/m2-s, Titan gets 14 to 17 J/m2-s depending on its current distance to Sol. Titan's atmosphere transmits red and near infrared light but absorbs blue light, about 10% of the solar flux makes it to the surface (1.4 to 1.7 J/m2-s). Amorphous silicon or cadmium telluride photovoltaic cells are best for this spectrum, they have an efficiency of 13% to 20% but their performance at Titan temperatures is unknown (the report conservatively estimates it to be 10%). And for low to mid latitudes the sun will be up for 1/3rd of a Titan day (not counting seasonal variations or eclipses by Saturn. Not to mention cloud cover and ethane rain).
As an example the researchers assumed that the Titan colonists consume 1.4×1019 J/year (about the same as the United States). To meet this need with solar power would require 8×1012 square meters of panels, about 89% of the surface area of the US, but only 10% of Titan's total surface area.
Geothermal Power
Jupiter's moon Io has a heat flux of 2.25 W/m2, but poor Titan only has 0.005 W/m2. Presumably more power could be obtained from a geothermal hot spot but so far none have been detected.
FORGET MARS—LET’S GO COLONIZE TITAN
For a while now, there's been a debate in the US over how to direct NASA's next major human spaceflight initiative. Do we build an outpost on the Moon as a step towards Mars, or do we just head straight for the red planet? Which ever destination we choose, it'll be viewed as the first step toward a permanent human presence outside of the immediate neighborhood of the Earth.
All of that indecision, according to a new book called Beyond Earth, is misguided. Either of these destinations presents so many challenges and compromises that attracting and supporting anything more than short-term visitors will be difficult. Instead, Beyond Earth argues, we should set our sights much farther out in the Solar System if we want to create a permanent human presence elsewhere. The authors' destination of choice? Titan, the largest moon of Saturn.
The case for Titan
Colonizing Titan seems like an outrageous argument, given that the only spacecraft we've put in orbit around Saturn took seven years to get there. Why should anyone take Beyond Earth seriously? Well, its authors aren't crackpots or mindless space fans. Amanda Hendrix is a planetary scientist who's worked at the Jet Propulsion Laboratory and the Planetary Science Institute. For the book, she's partnered with Charles Wohlforth, an environmental journalist who understands some things about establishing a livable environment. And the two of them have conducted extensive interviews, talking to people at NASA and elsewhere about everything from the health complications of space to future propulsion systems.
The resulting book is a mix of where we are now, which problems need to be solved to make a home elsewhere, and a future scenario that drives us to solve those problems. In this sense, Beyond Earth is a bit like the recent National Geographic effortMars, which blended present-day documentary with a fictionalized future. But the book is a little easier to swallow then the miniseries, which shunted viewers between footage of real-life rockets and CGI dust storms.
So, why Titan? The two closer destinations, the Moon and Mars, have atmospheres that are effectively nonexistent. That means any habitation will have to be extremely robust to hold its contents in place. Both worlds are also bathed in radiation, meaning those habitats will need to be built underground, as will any agricultural areas to feed the colonists. Any activities on the surface will have to be limited to avoid excessive radiation exposure.
Would anyone want to go to a brand-new world just to spend their lives in a cramped tunnel? Hendrix and Wohlforth suggest the answer will be "no." Titan, in contrast, offers a dense atmosphere that shields the surface from radiation and would make any structural failures problematic, rather than catastrophic. With an oxygen mask and enough warm clothing, humans could roam Titan's surface in the dim sunlight. Or, given the low gravity and dense atmosphere, they could float above it in a balloon or on personal wings.
The vast hydrocarbon seas and dunes, Hendrix and Wohlforth suggest, would allow polymers to handle many of the roles currently played by metal and wood. Drilling into Titan's crust would access a vast supply of liquid water in the moon's subsurface ocean. It's not all the comforts of home, but it's a lot more of them than you'd get on the Moon or Mars.
There is the distance thing, which Hendrix and Wohlforth acknowledge, but they argue it's a bit besides the point. The radiation and lack of gravity that make long-range space travel a risk would all bite anyone we sent to explore Mars. NASA assumes it'll find solutions, but the authors are critical of the Agency promoting a journey to Mars without already having solved them. Whether we go to Mars or Titan, the solution is speed: less time in space means less risk. And, if we could rocket along fast enough so that a round-trip to Mars with time spent exploring was safe, then we could do a one-way trip to Titan.
Have some Fi with that Sci
So, Beyond Earth is a good look at the current state of human space-exploration technology, as well as how that will hold us back from doing the things we want to do. It's both thoughtful and thought-provoking.
Mixed in with that, however, is a scenario under which Earth will get its act together and do what needs to be done to overcome these technological hurdles. That scenario is driven in part by a very believable desperation, caused by unaddressed climate change that drives wars and radicalization. Low Earth orbit becomes cheap, and then an efficient new thruster is developed. (Unfortunately, the thruster of choice in this scenario is unlikely to ever work.)
The Earth's governments bands together in a massive effort to send colonists to Titan, who almost immediately begin to view themselves as pioneers who boldly settle a new world with no help from anyone. Tensions and cultural differences ensue. This part of the book is a fun yarn, and plenty of it involves believable extrapolations from our current state. Whether it adds to Beyond Earth overall will probably be a matter of personal taste.
While the focus of the book is on leaving Earth, it's hard to escape the sense that Beyond Earth is an extensive argument for staying put. As Hendrix and Wohlforth repeatedly drive home, there's no place we could go in our Solar System that offers anything close to what the Earth provides for us. Going anywhere else would involve a cost that could go a long way toward making our existence here much more sustainable. While I'm all for eventually establishing a presence elsewhere, it would be nice to do so by choice, rather than end up being forced to do so due to our carelessness on Earth.
Full disclosure: they interviewed me while they were writing their book Beyond Earth: Our Path to a New Home in the Planets, which I have not read yet, and I will only be basing the following on the SciAm essay. It is not really about settling Titan either, but something that bothers me with a lot of scenario-making.
A weak case for Titan and against Luna and Mars
Basically the essay outlines reasons why other locations in the solar system are not good: Mercury too hot, Venus way too hot, Mars and Luna have too much radiation. Only Titan remains, with a cold environment but not too much radiation.
A lot of course hinges on the assumptions:
We expect human nature to stay the same. Human beings of the future will have the same drives and needs we have now. Practically speaking, their home must have abundant energy, livable temperatures and protection from the rigors of space, including cosmic radiation, which new research suggests is unavoidably dangerous for biological beings like us.
I am not that confident in that we will remain biological or vulnerable to radiation. But even if we decide to accept the assumptions, the case against the Moon and Mars is odd:
Practically, a Moon or Mars settlement would have to be built underground to be safe from this radiation.Underground shelter is hard to build and not flexible or easy to expand. Settlers would need enormous excavations for room to supply all their needs for food, manufacturing and daily life.
So making underground shelters is much harder than settling Titan, where buildings need to be isolated against a -179 C atmosphere and ice ground full with complex and quite likely toxic hydrocarbons. They suggest that there is no point in going to the moon to live in an underground shelter when you can do it on Earth, which is not too unreasonable – but is there a point in going to live inside an insulated environment on Titan either? The actual motivations would likely be less of a desire for outdoor activities and more scientific exploration, reducing existential risk, and maybe industrialization.
Also, while making underground shelters in space may be hard, it does not look like an insurmountable problem. The whole concern is a bit like saying submarines are not practical because the cold of the depths of the ocean will give the crew hypothermia – true, unless you add heating.
Anyone, from the most clueless amateur to the best cryptographer, can create an algorithm that he himself can’t break.
It is not hard to find a major problem with a possible plan that you cannot see a reasonable way around. That doesn’t mean there isn’t one.
Settling for scenarios
Maybe Wohlforth and Hendrix spent a lot of time thinking about lunar excavation issues and consistent motivations for settlements to reach a really solid conclusion, but I suspect that they came to the conclusion relatively lightly. It produces an interesting scenario: Titan is not the standard target when we discuss where humanity ought to go, and it is an awesome environment.
Similarly the “humans will be humans” scenario assumptions were presumably chosen not after a careful analysis of relative likelihood of biological and postbiological futures, but just because it is similar to the past and makes an interesting scenario. Plus human readers like reading about humans rather than robots. All together it makes for a good book.
Clearly I have different priors compared to them on the ease and rationality of Lunar/Martian excavation and postbiology. Or even giving us D. radiodurans genes.
In The Age of Em Robin Hanson argues that if we get the brain emulation scenario space settlement will be delayed until things get really weird: while postbiological astronauts are very adaptable, so much of the mainstream of civilization will be turning inward towards a few dense centers (for economics and communications reasons). Eventually resource demand, curiosity or just whatever comes after the Age of Ems may lead to settling the solar system. But that process will be pretty different even if it is done by mentally human-like beings that do need energy and protection. Their ideal environments would be energy-gradient rich, with short communications lags: Mercury, slowly getting disassembled into a hot Dyson shell, might be ideal. So here the story will be no settlement, and then wildly exotic settlement that doesn’t care much about the scenery.
But even with biological humans we can imagine radically different space settlement scenarios, such as the Gerhard O’Neill scenario where planetary surfaces are largely sidestepped for asteroids and space habitats. This is Jeff Bezo’s vision rather than Elon Musk’s and Wohlforth/Hendrix’s. It also doesn’t tell the same kind of story: here our new home is not in the planets but between them.
My gripe is not against settling Titan, or even thinking it is the best target because of some reasons. It is against settling too easily for nice scenarios.
Beyond the good story
Sometimes we settle for scenarios because they tell a good story. Sometimes because they are amenable to study among other, much less analyzable possibilities. But ideally we should aim at scenarios that inform us in a useful way about options and pathways we have.
That includes making assumptions wide enough to cover relevant options, even the less glamorous or tractable ones.
That requires assuming future people will be just as capable (or more) at solving problems: just because I can’t see a solution to X doesn’t mean it is not trivially solved in the future.
In standard scenario literature there are often admonitions not just to select a “best case scenario”, “worst case scenario” and “business as usual scenario” – scenario planning comes into its own when you see nontrivial, mixed value possibilities. In particular, we want decision-relevant scenarios that make us change what we will do when we hear about them (rather than good stories, which entertain but do not change our actions). But scenarios on their own do not tell us how to make these decisions: they need to be built from our rationality and decision theory applied to their contents. Easy scenarios make it trivial to choose (cake or death?), but those choices would have been obvious even without the scenarios: no forethought needed except to bring up the question. Complex scenarios force us to think in new ways about relevant trade-offs.
The likelihood of complex scenarios is of course lower than simple scenarios (the conjunction fallacy makes us believe much more in rich stories). But if they are seen as tools for developing decisions rather than information about the future, then their individual probability is less of an issue.
In the end, good stories are lovely and worth having, but for thinking and deciding carefully we should not settle for just good stories or the scenarios that feel neat.
(ed note: alas, this novel was written back in those early years when astronomers thought the atmosphere of Titan was mostly hydrogen, instead of mostly nitrogen as we now know to be true. But this is still interesting from a MacGuffinite standpoint, demonstrating how to set up an interplanetary economy.)
Then, out of that silence, came something new.
It was faint and distant, yet conveyed the impression of overwhelming power. First there was a thin scream that mounted second by second in intensity, but somehow never came any closer. The scream rose swiftly to a demonic shriek, with undertones of thunder—then dwindled away as quickly as it had appeared. From beginning to end it lasted less than half a minute. Then there was only the sighing of the wind, even lonelier than before.
“Oh. I know what made that noise,” said Karl smugly. “Didn’t you guess? That was a ram-tanker making a scoop. If you call Traffic Control, they’ll tell you where it was heading.”
But like all healthy ten-year-olds, Duncan was resilient. The magic had not been destroyed. Though the first ship had lifted from Earth three centuries before he was born, the wonder of space had not yet been exhausted. There was romance enough in that shriek from the edge of the atmosphere, as the orbiting tanker collected hydrogen to power the commerce of the Solar System. In a few hours, that precious cargo would be falling sunward, past Saturn’s other moons, past giant Jupiter, to make its rendezvous with one of the fueling stations that circled the inner planets. It would take months—even years—to get there, but there was no hurry. As long as cheap hydrogen flowed through the invisible pipeline across the Solar System, the fusion rockets could fly from world to world, as once the ocean liners had plied the seas of Earth.
Duncan understood this better than most boys of his age; the hydrogen economy was also the story of his family, and would dominate his own future when he was old enough to play a part in the affairs of Titan. It was now almost a century since Grandfather Malcolm had realized that Titan was the key to all the planets, and had shrewdly used this knowledge for the benefit of mankind—and of himself.
Malcolm Makenzie had been the right man, at the right time. Others before him had looked covetously at Titan, but he was the first to work out all the engineering details and to conceive the total system of orbiting scoops, compressors, and cheap, expendable tanks that could hold their liquid hydrogen with minimum loss as they dropped leisurely sunward.
Back in the 2180s, Malcolm had been a promising young aerospace designer at Port Lowell, trying to make aircraft that could carry useful payloads in the tenuous Martian atmosphere.
When he had finished his calculations and stolen enough drafting-computer time to prepare a beautiful set of drawings, young Malcolm had approached the Planning Office of the Martian Department of Transportation. He did not anticipate serious criticism, because he knew that his facts and his logic were impeccable.
A large fusion-powered spaceliner could use ten thousand tons of hydrogen on a single flight, merely as inert working fluid. Ninety-nine percent of it took no part in the nuclear reaction, but was hurled from the jets unchanged, at scores of kilometers a second (exhaust velocity of 20,000 m/s or more, egads!), imparting momentum to the ships it drove between the planets. There was plenty of hydrogen on Earth, easily available in the oceans; but the cost of lifting megatons a year into space was horrendous. And the other inhabited worlds—Mars, Mercury, Ganymede, and the Moon—could not help. They had no surplus hydrogen at all.(again, since the novel was written astronomers have discovered frozen water in polar lunar craters that are perpetually sunless) Of course, Jupiter and the other Gas Giants possessed unlimited quantities of the vital element, but their gravitational fields guarded it more effectively than any unsleeping dragon, coiled round some mythical treasure of the Gods. In all the Solar System, Titan was the only place where Nature had contrived the paradox of low gravity and an atmosphere remarkably rich in hydrogen and its compounds.
Malcolm was right in guessing that no one would challenge his figures, or deny the feasibility of the scheme, but a kindhearted senior administrator took it upon himself to lecture young Makenzie on the political and economic facts of life. He learned, with remarkable speed, about growth curves and forward discounting and interplanetary debts and rates of depreciation and technological obsolescence, and understood for the first time why the solar was backed, not by gold, but by kilowatt-hours.
“It’s an old problem,” his mentor had explained patiently. “In fact, it goes back to the very beginnings of astronautics, in the twentieth twentieth century. We couldn’t have commercial space flight until there were flourishing extraterrestrial colonies—and we couldn’t have colonies until there was commercial space transportation. In this sort of bootstrap situation, you have a very slow growth rate until you reach the takeoff point. Then, quite suddenly, the curves start shooting upward, and you’re in business.
“It could be the same with your Titan refueling scheme—but have you any idea of the initial investment required? Only the World Bank could possibly underwrite it….”
“What about the Bank of Selene? Isn’t it supposed to be more adventurous?”
“Don’t believe all you’ve read about the Gnomes of Aristarchus; they’re as careful as anyone else. They have to be. Bankers on Earth can still go on breathing if they make a bad investment….”
But it was the Bank of Selene, three years later, that put up the five megasols for the initial feasibility study. Then Mercury became interested—and finally Mars. By this time, of course, Malcolm was no longer an aerospace engineer. He had become, not necessarily in this order, a financial expert, a public-relations adviser, a media manipulator, and a shrewd politician. In the incredibly short time of twenty years, the first hydrogen shipments were falling sunward from Titan.
But suppose all this is fantasy. Suppose that fastship (relativistic starship) travel is
impractical even to the solar society our descendants might create in
the next few centuries. Will humanity be forever bound to this one
tiny corner of the Galaxy? We think not. There is another road to the
stars, a road paved with comets, on which journeys between stars will
take a few thousand generations. If there are no fastships, this slower
human migration might fill the Galaxy in half a billion years.
By far the most numerous objects in the Sun's family are comets.
The Sun probably has several trillion, most circling our star far beyond
the orbit of Pluto, forming a great spherical cloud, the Oort cloud,
named after the Dutch astronomer who deduced its existence in
1950. From time to time a relatively near encounter with another star
perturbs the orbits of a few comets. Some are sent spinning off into
interstellar space. Others are nudged toward the inner Solar System
where, a million years later, chance encounters with the giant planets
may send the comets out of the Solar System like the Voyager
spacecraft. During the last century the Solar System has definitely lost
several dozen comets and probably very many more. If this process is
common in the Galaxy, interstellar space is liberally strewn with
comets. The average spacing is probably of the order of ten times the
Earth-Sun distance, about 10 astronomical units (AU), or 80 light-minutes. As Freeman Dyson has suggested, if interstellar comets are
common, “the galaxy is a much friendlier place for interstellar
travelers than most people imagine.” We imagine then a human
population living off cometary resources and diffusing slowly out into
interstellar space.
Before we describe how this migration of a people we might call
interstellar nomads would begin, let us describe the resources available from the comets and how the scarcity of those resources might
shape the nomad communities.
A typical comet may not seem very hospitable, being an irregular
chunk of ice and rock perhaps a kilometer or two across. In fact, we
don’t imagine that people will actually live on the comets but, rather,
use them as a source of raw materials to build habitats and supply the
other physical necessities of life. Except for hydrogen, which will be
underrepresented, and the chemically inert noble gases like helium,
which will be very scarce indeed, the naturally occurring elements
will be present in roughly cosmic abundances, a vast supply of
material resources. The greatest obstacle facing potential nomads is
energy, which is very scarce in the interstellar deep. Nonrenewable
sources would include deuterium to power fusion generators and the
kinetic energy (energy of motion) of the comet, which could be
extracted through interactions with the galactic magnetic field. Renewable energy sources would include starlight collected with gigantic mirrors and possibly cosmic rays (if anyone can figure out a
practical scheme for catching them). Elsewhere we have estimated
that the aluminum in a typical comet would be sufficient to build
mirrors to collect a few hundred megawatts of starlight. Other, more
abundant substances may prove to be more applicable for the mirror
surfaces. We expect that power levels of 1 megawatt (MW) per person
are reasonable and therefore a typical comet could support a few
hundred people with starlight. A megawatt is about fifty times the
current per capita use in the United States.
Energy is by far the scarcest resource in interstellar space; together
with social and genetic factors it will determine the size and structure
of the communities. There is energy to permit the growth of very large
communities. Comets have random velocities of about 10-20 km/sec,
mimicking the random velocities of the stars that eject them. In a
sense the comets are the molecules of a gas stirred by random
gravitational encounters with the stars embedded in that gas. Comets
could be gathered into large clusters if velocity changes could be
imparted, rather like maneuvering two spacecraft for a rendezvous in
Earth-orbit. Only a few percent of the deuterium in the cometary ice
would be needed to bring a new comet into a cluster. Such clustering
would be necessary in the case of the relatively numerous small
comets, which might not be able individually to support a self-sufficient community.
Clusters could not grow without bounds for the simple reason that
the gathering process would soon deplete the stock of nearby fresh
comets. Imagine, for example, that the islands of the Pacific float and
that before the Polynesians arrived the islands were distributed at
random. Suppose then that the Polynesians wanted to live in island
clusters and could drag the islands together. As the groups grew the
average spacing between them would grow as well. In principle, all
the islands could be clustered at mid-ocean but that would involve
dragging a large number of islands long distances from the periphery
of the ocean. A more efficient process (and one that would promote
genetic and cultural diversity) would be to form a number of relatively small groups scattered over the ocean. The time and cost of
gathering would decrease dramatically.
Just how large the interstellar comet clusters would grow will
depend on subtle factors; we offer only crude estimates. The starlight
mirrors would be very large; each 1 MW mirror would be about the
size of the continental United States. Although the mirrors would be
tended by autonomous maintenance robots, the nomads would have
to live nearby in case something went wrong. After all, the mirrors and
the energy they supply will be vital to the well-being of the community. Although we could imagine that the several hundred people
who could be supported by the resources of a single comet might live
in a single habitat, the mirrors supporting that community would be
spread across about 150,000 km. Trouble with a mirror or robot on
the periphery of the mirror array would mean a long trip, several
hours at least. It would make more sense if the community were
dispersed in smaller groups so that trouble could be reached in a
shorter time. There are also social reasons for expecting the nomad
communities to be divided into smaller co-living groups. For reasons
perhaps stemming from our distant past, we seem to function best in
groups of about a dozen adults, be it a hunter-gatherer band, a bridge
club, an army platoon, a political cell, or any other of numerous
examples. We imagine then that people would live in bands of about
twenty-five men, women, and children, each band occupying a
spacious habitat constructed from cometary materials. They would
tend (with considerable help from robots and computers) a farm of
starlight mirrors stretching across perhaps 30,000 km of space (fig.
5.3).
Fig. 5.3
This hexagonal array of starlight mirrors might support a co-living group of twenty-five adults and children. Each of the mirrors is about the size of the continental United States (about 3,000 km diameter), and the entire mirror "farm" is about 30,000 kilometers across.
Fig. 5.4
Each of the hexagons in this figure represents one of the mirror farms shown in figure 5.3. the dots are the schematic representations of the habitats occupied by each twenty-five-member "band." In reality the habitats would probably be much too small to be seen on this scale.
Community located in inner Oort Cloud
This community lacks access to deuterium for fusion power. Instead it subsists on the thin gruel of the sunlight available at 5,000 AU (0.08 light-years). This is about 0.00000004 the solar power available at Terra.
The habitats will resemble small Bernal Spheres, O'Neill Cylinders or other space habitat; except there is no need for sunlight windows. What's the point?
Diagram from Islands in the Sky by Richard P. Terra (1991) click for larger image
We model our minimal cometary unit on the oldest of human
examples: the hunting and gathering band, the social organization
within which our ancestors lived for millions of years. As first pointed
out by Joseph Birdsell in his studies on Australian aborigines and
illustrated by Richard Lee’s sketch in this volume of the San people of
the Kalahari, among surviving hunting and gathering people around
the world these bands averaged roughly twenty-five men, women, and
children. Within a band of twenty-five there are apparently enough
men and women to effectively carry out the vital subsistence and
childrearing functions, yet the band is not so large as to become
unwieldy or fragmented when ranging over a hunting and gathering
territory in search of scattered resources. However, although in
everyday life these bands were essentially independent from one
another, of necessity they formed into larger breeding communities
averaging, on continent after continent, around 500 individuals.
These tribal groupings, typically marked by dialect as well as gene-flow boundaries, with careful attention to marriage rules prescribing
that mates must be sought among distantly related persons from
outside the natal band, appear to be just large enough to avoid the
genetic dangers of inbreeding and also to provide a seemingly
necessary and enriching larger social environment. Thus, we expect
that cometary bands would also cluster for purposes of healthy
breeding and social enrichment in tribal groups of at least 500
citizens. We imagine clusters of some 20 cometary bands, the members of which would exchange marriageable youths and periodically
meet to celebrate rites of passage, for calendrical observances, and for
other social occasions.
Because of the great size of the energy-gathering mirrors, the
members of such a cometary tribe, living within the constituent
bands, would spread across some 200,000 km of space (fig. 5.4).
Assuming power levels of about 1 MW per person, a tribe could easily
live off the resources of a single typical comet or a few smaller singles
(the smaller comets being more numerous) gathered into a cluster.
The habitats and mirrors would ‘fly in formation’ with the comet
cluster. Although the bands would live in separate habitats, they
would gather at frequent intervals for tribal ritual. Should someone
want to leave the tribe entirely, there would be opportunities every
decade or so to transfer to a passing tribe. Such transfers would be
rather expensive, because they would involve large velocity changes,
but would not be beyond the energy means of the group. Such
inter-tribal transfers might be fairly common if they serve to strengthen
social ties between groups that might want or need to exchange
information or goods. Of course, the large relative velocities (10-20
km/sec = 2-4 AU/yr) between separate tribes would mean that they
would be too far apart for physical exchanges after only a few years.
However, close communications by electromagnetic means might
persist for many generations.
This proven band-tribe structure is the smallest grouping that
seems practical for any human community. Although, as we have just
mentioned, information exchange would always be possible with a far
larger number of people by sophisticated electromagnetic communications channels, larger communities may also develop. Perhaps
the diversity of skills needed to support an interstellar community
will require larger groups. However, estimates of the energy cost of
travel across a sizable community suggest that the largest practical
population is of the order of 100,000 people. A one-day trip across
such a “city” would cost about a megawatt-yr. If, as we have assumed,
power generation is of the order of 1 MW, frequent trips across such a
city would strain the resources of the community. We therefore
suggest that communities of interstellar nomads, living off the resources of clustered comets, will range in size from 500 to no more
than 100,000.
How then might this comet-based human migration out of the Solar
System proceed? We imagine that within a few hundred years exploitation of Solar System resources will have carried some adventuresome representatives of our species out to the Oort cloud. Because the Oort cloud comets are relatively close to the Sun, rather
large communities could be supported by sunlight. O’Neill has
estimated that the mass of solar collectors would have to equal the
habitat mass at about 2,000 AU, well into the Oort cloud. There the
interstellar comets may be sprinkled at a ratio of about one per several
thousand solar comets. As the Oort cloud population grows, there will
be a temptation to hitch a ride on an interstellar comet. The pioneers
might well be a small group of young adults attracted by the adventure
of it all. They would drift outward slowly, at about 2-4 AU per year.
The group might grow rather quickly (as Birdsell suggests) and would
soon be faced with the choice of group fissioning or gathering other
comets. We suspect that both options would be exercised from time
to time. Eventually, there would be an expanding sphere of nomads.
At the frontier the gathering and fissioning options would both be
possible, whereas closer to the Sun gathering and fissioning would
end and some sort of steady state, a mix of large and small communities, would arise.
After about 50,000 years something dramatic may happen.
When the Vikings and, later, Columbus crossed the Atlantic, two
branches of the human family that had been isolated for a similar
period were reunited. It was not, of course, a trouble-free reunion. If,
as we suspect, fastship travel is practical in some form, long before the
interstellar nomads will have gotten very far out of the Solar System,
fastship pioneers will have founded settlements in the nearest stellar
oases. A thousand years later or so their descendants will have begun a
cometary migration. About 50,000 years from now these two populations should meet roughly midway between the Sun and the nearest
stars.
There are probably good science fiction tales to be told about these
meetings. The cultural and genetic diversity implicit in a large
number of small communities suggests that the parties will find one
another strange. However, we do not expect any surprise encounters.
Because the comets drift at only a tiny fraction of lightspeed, the two
flows of nomads should be well aware of each other’s progress.
Communication between approaching communities would be
possible long before physical contact. Perhaps our descendants will
have learned something from the sometimes disastrous historical
contacts that Crosby describes. We leave the implications to science
fiction and to posterity.
We have described in general terms how human beings might make
a living as nomads wandering in the interstellar deep. We have tried to
be cautious about extrapolations from present technology and have
stayed close to admittedly sketchy modern concepts of interstellar
resources. Just as the Solar System has proven to be a very different,
but still wonderful, place from what we had suspected just a few
decades ago, the interstellar deep will likely be stranger than we
imagine—but perhaps more marvelous too and more hospitable to
humankind.
Colonization of the Galaxy
We began this essay with Clarke’s three laws of prophesy. The
Master cautions against timidity. We could have indulged in flights of
fancy, say, the warp drive that speeds Captain Kirk’s Enterprise from
one adventure to the next. Perhaps such things are in the cards.
Certainly, the universe has many surprises in store for us.
However, our immediate purpose has been to explore the possibility that the very ancient human migration that began so long ago in
East Africa might take our descendants beyond the terrestrial cradle
through the Solar System to the stars. Very advanced technology
(Clarke’s “magic”) might reduce the exercise to trivialities. We have
tried to show that interstellar travel by one or both of two basic
methods is feasible. We think that modest extrapolations of current
trends in technology—in genetics, computers, and energy use—lead
to the conclusion that interstellar migrations are a plausible expectation. Journeys to the stars and the establishment of viable human
communities beyond the borders of the Solar System require no
magic—only time, skill, patience, and continuity with the past.
After spreading throughout the warm.
compact inner core of the Solar System,
the human race will face the daunting
challenge of crossing the deep ocean of
space that lies between Sol and even the
nearest neighboring stars. But just off
shore, at the outer fringe of Sol’s gravitational reach, countless small icy islands are scattered in a vast spherical
archipelago reaching almost halfway to
the Sun’s nearest neighbors—the myriad comet nuclei of the Oort Cloud.
Human exploration and settlement of
the Oort Cloud will create a new environment for a diverse array of social,
economic, and biological experimentation, and that diversity may indicate the
future course of the evolution of our
species. The Oort Cloud will also be the
proving ground for the technology of
interstellar travel: these tiny, scattered
islands on the periphery of the Solar
System may be our first stepping stones
to the stars.
Although the notion of human settlements on comet nuclei dates back to the
eighteenth century, it was not until the
latter part of this century that the concept began to receive serious attention.
In 1972, physicist Freeman Dyson offered this challenging vision:
It is generally considered that
beyond the Sun’s family of planets
there is absolute, emptiness extending for light-years until you
come to another star. In fact it is
likely that the space around the
Solar System is populated by
huge numbers of comets, small
worlds a few miles in diameter,
rich in water and other chemicals
essential to life … comets, not
planets, are the major potential
habitat of life in space.
More recently, astronomers, biologists, sociologists, historians and design
engineers have begun to subject the idea
to rigorous—if somewhat speculative
—scientific and engineering analysis.
They have begun to explore the very
real possibility of establishing human
settlements in the distant reaches of the
Oort Cloud, and what life might be like
there.
The Oort Cloud is thought to form a
vast, spherical collection of small icy
bodies orbiting at enormous distances
from the Sun. Although direct observational evidence is sketchy, there are
sound theoretical reasons for postulating
its existence.
It is generally believed that the comet
nuclei in the Oort Cloud formed along
with the inner Solar System about 4.6
billion years ago. In the most widely
accepted theories, the Solar System
originated in the gravitational collapse
of an immense cloud of interstellar gas
and dust. As it collapsed the cloud flattened out into the classic solar nebula,
a broad, fairly thin disk of material
slowly rotating about the infant Sun.
Within the nebula, the gas and dust
particles began to condense and clump
together into small aggregates that grew
slowly into larger and larger bodies,
forming planets, moons, asteroids—and
comets.
Most comets are thought to have
formed on the outer fringe of the solar
nebula, at about the same distance from
Sol as Uranus and Neptune (roughly 20
to 30 Astronomical Units). The bulk
composition of these two planets is close
to what would be expected if a similar
mass of comet nuclei were collected together into a single, planet-sized body.
In another line of evidence, most
comets seem to be significantly depleted
in carbon relative to the average cosmic
abundance of that element. This can be
interpreted as an indication that comets
formed in a region of the nebula warm
enough to evaporate much of the methane (CH4) present and prevent it from
condensing with the remaining gasses
and dust. As expected, comets are also
badly depleted in hydrogen, as are all
the other bodies in the Solar System
except for Jupiter. Saturn, and the Sun.
Most of these small bodies would be
swept up into the growing planets, but
the orbits of many others would be perturbed and altered by close encounters.
An encounter with Jupiter or Saturn
would most likely result in complete
ejection from the Solar System into interstellar space. In the vicinity of less
massive Uranus and Neptune, comet
nuclei would also be perturbed into orbits far from the Sun—but not entirely
beyond its gravitational reach.
Initially,the comets would orbit more
or less in the same plane as the inner
system, but over time the faint tug from
passing stars would randomize their orbital inclinations, creating a vast, dispersed, spherical cloud of small icy
bodies—the Oort Cloud, named for
Dutch astronomer Jan Oort, who first
postulated its existence and structure in
the 1950s.
Estimates of the total number of
comet nuclei in the Oort Cloud range
from about l00 billion to several trillion—more than the total number of
stars in the entire galaxy. Their total
mass is difficult to estimate with any
precision, but is probably at least equal
to the mass of Earth, and may be much
greater. It is thought that the original
population of the Oort Cloud was about
2 trillion comets with a mass about 30
times that of Earth, but has since been
depleted by escape into interstellar space
and perturbation into orbits closer to the
Sun, where the icy bodies evaporate
after a time.
The majority of the comet nuclei in
the Oort Cloud are probably distributed
throughout a broad spherical shell between 40,000 and 60,000 A.U. from the
Sun (although some astronomers place
the density peak a bit closer, at around
25,000 A.U.). This is just shy of one
light-year (64,000 A.U.). It is possible
that a substantial number orbit much
closer to the Sun, between 100 and
10,000 A.U., forming an inner Oort
Cloud. Within about 10,000 A.U. of the
Sun, the orbits of the comets would lie
more or less in the plane of the ecliptic.
Beyond that distance, the influence of
passing stars is strong enough to produce the random spherical distribution
of the outer Cloud. The outer periphery
of the main Cloud is probably at about
100,000 A.U.—close to two light-years.
The maximum dynamic limit is about
200,000 A.U., where the gravitational
pull of the galactic core begins to overcome that of the Sun.
The typical separation between comet
nuclei in the Oort Cloud is probably
about 20 A.U.: very widely spaced indeed. In the main Cloud the orbital periods would range from one to ten
million years.
Since the close encounters of Halley’s
Comet by Soviet and European spacecraft in 1986, a clearer picture of the
nature of comet nuclei has begun to
emerge. They are estimated to range in
size from 0.1 to 10 kilometers in diameter and in mass from 1013 to l019
grams—between 10 million and l0 trillion metric tons. Though small in comparison to the planets, comet nuclei still
contain huge amounts of material.
Comets are thought to be made up of
an extremely light, porous aggregation
of the ices of various volatile elements
and compounds, with a scattering of
embedded dust and complex organic
molecules. The ratio of dust to gas is
estimated to range from 0.7 to 0.85 by
mass.
The volatile component is thought to
consist chiefly of water ice but also includes CO, CO2, methane (CH4), ammonia (NH3) and a variety of other
compounds containing oxygen, sulfur
and nitrogen. The ices are thought to
include a high proportion of clathrates,
in which other molecules are trapped
inside the lattices of the frozen gases.
The grains of dust and organic material
may be remnants of the interstellar cloud
or the condensing solar nebula. A break-
down of the estimated abundances of
the chief elemental and chemical constituents of a typical comet is presented
in table 1.
TABLE 1 Composition of Comet Nuclei: Estimated Abundances and Distributions
A. Elemental Abundances
B. Mass & Volume Distribution of Principal Components
Element
Number (%)
Mass (%)
Component
Mass (%)
Volume (%)
H
43.9
4.2
Silicates
21
8.6
C
6.7
7.7
Carbon (graphite)
6
3.4
N
2.7
3.8
Very Complex Organics
19
21.0
O
40.2
62.5
H2O
19
27.0
S
1.0
3.1
CO
10
13.0
Mg
1.9
4.5
Other
25
27.0
Si
1.8
4.9
Other Volatiles: CO2, CH4, N2, NH3, HCN, etc.
Fe
1.6
8.8
Ni + Cr
0.1
0.6
Al
—
0.4
The average density of cometary material is estimated to be about l to 1.5
g/cm3—close to that of water (1.0 g/cm3).
This material is thought to be a porous
matrix of solid grains and larger particles, with the gaps between them filled
with ice. Comet nuclei are likely to be
irregular in shape, uncompacted and
undifferentiated: for a body under about
10 km diameter, the force of gravity is
simply too weak to affect shape or structure to any significant degree. The aggregate would have a light. very fragile
structure resembling that of windblown
snow. Both structure and composition
are expected to be fairly homogeneous
throughout, although the surface layers
(to a depth of perhaps 10 m) may
undergo some alteration due to sublimation of ices, irradiation by cosmic
rays and other radiation, and occasional
sand-blasting from interstellar gas and
dust.
This light fragile structure means that
the resources present in the comet nuclei
will be readily accessible to any human
settlers. The porous mixture of dust and
ice would offer little mechanical resistance, and the two components could
easily be separated by the application
of heat. Volatiles 'could be further refined through fractional distillation while
the dust, which has a high content of
iron and other ferrous metals, could easily be manipulated with magnetic fields.
Little additional crushing or other mechanical processing of the dust would
be necessary. and its fine, loose-grained
structure would make it ideal for subsequent chemical processing and refining. Comet nuclei thus represent a vast
reservoir of easily accessible materials:
water, carbon dioxide. ammonia, methane. and a variety of metals and complex organics.
Although comets offer a huge reserve
of easily accessible resources for any
would-be settlers, they will be useless
without a readily available supply of
energy. Conditions at those distances
from the Sun will be bleak: the Sun will
not even be the brightest star in the deep
black sky, and the temperature is a bare
10 K. Making the cold, barren ice islands of the comet nuclei habitable will
be a formidable task, and energy consumption is likely to be very great. Yet
energy will be the scarcest resource in
the Oort Cloud.
The size of any comet-based communities will be closely constrained by
two factors: the availability of energy
sources and the rate of energy consumption. Access to a dependable, long-term energy source will be crucial to the
establishment of a viable, self-sufficient
settlement. Energy consumption levels
will affect both the size and complexity
of the economy, the standard of living,
and longevity of the community as a
whole.
What are some of the potential energy
sources likely to be available?
Nuclear power—fission—is unlikely.
Heavy elements such as uranium will
be present in only minuscule amounts,
certainly not enough to form the basis
for a comfortable, long-term settlement.
In addition, fission processes are “dirty”
in the sense that they generate a relatively high flux of radioactivity that may
be undesirable.
Another potential energy source is the
controlled combustion of hydrogen and
oxygen, which both occur in abundance
in the vast amounts of water ice that
makes up about one-fifth of each comet’s
mass. The catch, of course, is that water
must first be hydrolyzed, an energy-consuming process. Settlements closer
to the Sun, say within 1,000 A.U., or
those with sufficient surplus energy
from other sources, may employ H2/O2
reaction cells for some purposes. Hydrogen combustion will probably serve
as the major propellant for long-distance
travel, but is unsuitable for basic power
generation.
There is an alternate means of using
hydrogen as an energy source—fusion.
It seems reasonable to assume that the
technology for fusion employing deuterium, a heavy isotope of hydrogen that
fuses relatively easily, will be available
by the time settlement of the Oort Court
begins. Estimates of the ratio of deuterium to simple hydrogen in interstellar
gases vary from about 1 in 10,000 to
1 in 100,000. Although rare, for an average-size comet this represents about
50,000 to 100,000 metric tons of deuterium.
This enormous store represents enough
energy to support a population of millions for several centuries—but when
the supply is gone, those millions will
perish. It seems much more likely that
Oort Cloud communities will choose to
support much smaller populations for
much greater lengths of time, husbanding their precious supply of deuterium
for perhaps thousands or tens of thousands of years. They may also employ
a more efficient alternative fusion pathway involving a mixture of deuterium.
tritium (another hydrogen isotope), and
helium to extend the lifetime of the
available supply.
At some point humans may also learn
how to initiate proton fusion and thereby
assure a virtually unlimited supply of
energy employing simple hydrogen, the
most common element in the cosmos.
But as yet, only the stars themselves
have accomplished this on a large scale.
Finally, there is one alternative renewable source of energy available:
starlight. The concept of harvesting starlight to support comet-based communities was first put forward by
astrophysicist Eric Jones and anthropologist Ben Finney:
In principle all one needs is a
giant mirror to concentrate the
thin photon stream. The mirrors
would be truly gigantic … At
half a parsec [about 1½ light-
years] from a Sun-like star the
minor would have to be about
1500 kilometers radius to
collect a megawatt (roughly the
size of the continental US).
Practicality and common sense
might well dictate a larger
number of much smaller
collectors.
Jones and Finney estimate a typical
medium-sized comet could supply
enough aluminum for mirror surfaces
to collect about 300 megawatts (MW)
from starlight. If additional metals were
used. this capacity could be enhanced
somewhat. Jones and Finney estimated
per capita power consumption at 0.6
MW. about 30 times the current US rate
of 20 to 25 KW per capita; thus the
typical population of a comet-based
community would be about 500.
The amount of aluminum and other
reflective metals in a given comet will
set a definite upper limit on the area of
mirror surface that can be created, and
thus on the population that can be supported by collecting starlight. Comet-based communities closer to the Sun in
the inner Oort Cloud will therefore enjoy a higher photon flux and will have
more energy available to them, and will
be able to support larger populations.
Although the energy supply will be
the most important limiting factor for
any comet-based settlements, there are
a host of other factors that will influence
the nature of their economies.
Most of these communities are likely
to be small and isolated, with populations of only a few hundred. Such small
economic systems are sure to face many
limitations and constraints. Many types
of tools, specialized pieces of equipment and expert skilled labor will all be
in short supply. The economy will essentially be a closed system, especially
for the more distant and isolated settlements. For many items and commodities, supply will not be related in any
way to need or demand.
The members of these communities
will of necessity be very dependent upon
one another and are also likely to develop a strong conservation ethic; they
will recycle as much as possible. Their
relative isolation will encourage self-reliance and cooperation, as well as the
pooling of skills, labor, and resources.
Small, isolated, tightly closed economies are thus likely to be more communal in their outlook, particularly in
regard to resources, power consumption, and the allocation of labor. Larger
communities will probably have a wider
variety of economic pattens.
Because populations are likely to be
small, each individual will be of immense value to the community, representing a pool of knowledge, skills, and
experiences as well as a heavy investment in training and education. It will
be necessary for the settlers to become
generalists: a small community will simply not have enough people to support
a specialized expert in every field. Each
person will have to develop a sound
working knowledge in many overlapping fields, and consequently will have
less time to devote to becoming expert
in any one of them. Some specialties
may have to be eliminated altogether in
very small communities.
Many of these limitations and constraints can likely be alleviated or even
eliminated with the aid of sophisticated
technology. The exploration and settlement of the Oort Cloud, the establishment of viable communities in the cold
deeps of space, will demand heavy reliance on many different forms of high-technology equipment. A combination
of the right tools and skills to use them
will be vital.
It seems unlikely that a small band
of pioneers will be able to create a secure, comfortable niche in the Oort
Cloud without the use of automated systems and artificial intelligence (AI).
Such systems will eliminate the need for
human intervention at many basic but
routine levels of activity, freeing people
to apply their skills where they are
needed most. Computers and automated
systems are skilled tools which can enhance and multiply human capabilities
many-fold.
The human residents of the Oort
Cloud will control and monitor the operation of a complex array of self-directed systems. Most of the basic comet-mining and materials processing operations will probably be automated. They
will produce stockpiles of refined materials and, at the highest level of complexity, produce many types of finished
products.
Artificially intelligent systems will
also be essential to the viability of the
communities, particularly for small settlements. They will rely heavily on expert systems—sophisticated computer
programs that combine an extensive
store of information with a powerful
decision-making capability for interpreting complex data. They will operate
at the level of a human expert that perhaps the community cannot support.
The human members of the community, with their generalized skills and
experiences, will be capable of handling
all the normal operations and events; the
expert systems would serve to supplement and complete the basic suite of
skills and abilities required to keep the
community healthy.
Because of their dependence on AI
systems, residents of the Oort communities will also need to be skilled in the
manipulation and application of information. They will have access to the
vast sum of human knowledge, but it
will be useless to them without sophisticated information processing systems.
They will have to become adept at working in cooperation with their AI systems
to manage the masses of data available,
to sift through it to extract what they
need. The use of sophisticated computer-based systems will be a basic skill
in every Oort Cloud community, and it
seems likely that education will be based
in large pan on AI systems.
All these factors will have a number
of important effects on the shape of the
settlement’s economy. The distribution
of activity will be very different for any
Earth-bound economic system.
The primary sector of the
economy—the exploitation of natural
resources—is likely to be small and almost completely automated. Human involvement will be minimal. The primary
sector will consist of two basic activities: energy production and the harvesting of cometary resources. Once the
appropriate systems are established,
both will be relatively simply activities.
The secondary sector—the transformation of the natural resources—will
include refining and processing the raw
cometary feedstock, manufacturing.
construction and assembly operations.
agriculture and food production, and
recycling. Again, many of these activities will be highly automated. but closer
human supervision will be necessary to
tailor these activities to the current needs
of the community.
It is the tertiary sector of the economy, support services. that will engage
the majority of human skill and attention. It will include operation of the
utility and life support systems, maintenance and repair operations, transportation, health care, information
processing, storage and retrieval. education and administration, business and
commerce.
The settlers will have to choose between many different possible paths for
development. Will they allow the community to grow, or should they impose
controls on themselves to maintain a
small population? Will they want their
community to last many years at a low
rate of consumption, or will they want
to trade communal longevity for a
higher rate of resource consumption?
The outcome of these decisions will
depend primarily on two factors: the
available supply of resources and the
standard of living that the community
desires and will defend.
The average standard of living is
likely to be quite comfortable, within
the limits of the communities capabilities. Because of its extreme fragility,
the surface of the comet itself will be
unsuitable for permanent dwellings; the
habitats will probably be free-flying.
Physically, they may resemble the Bernal Spheres and O’Neill Cylinders already envisioned for space-based
communities in the inner Solar System.
The most significant difference will be
the lack of large window surfaces, since
there will be no need to admit sunlight
for illumination, which will allow for
an increase in the usable surface area
inside the habitats.
Communities lacking a large supply
of deuterium or those choosing to conserve their supply would locate their
habitats at the center of huge arrays of
mirrors for the collection of starlight.
A variety of social and economic factors
suggest the members of such a community, which would number about
500, would be dispersed throughout the
array in bands of about 25 persons—a
dozen adult men and women and their
children.
Each band would tend a mirror farm
stretching across perhaps 30,000 km of
space, overseeing a complex network
of robots and other automated systems
responsible for the routine operation and
maintenance of the mirror farm. In the
event of an emergency requiring human
intervention. the settlers would need to
be able to reach even the edge of the
array quickly, and so will gather the
mirrors in tightly packed arrangements.
The individual mirror farms of the
separate bands would then be clustered
into a vast array supporting the community’s entire population, spread out
over l50,000 to 200,000 km of space:
an immense surface area of ultra-thin
metal film centered around the invisible
point of the comet nucleus. gathering
the faint light of the stars.
Communication between bands within
the community could easily be maintained by radio and laser.
Despite the limitations of the environment, Oort Cloud communities that
choose to grow and develop large economies will have many options. One of
the most obvious ways to enhance their
resource base will be to create clusters
of comet nuclei. Clustering would require the commitment of significant
amounts of time, energy and resources,
but the potential rewards will ensure that
some communities will begin to move
additional comets into more convenient
orbits.
Given the average separations and
relative orbital velocities of comet nuclei in the Cloud. it would take between
five and ten years to bring a new comet
into a cluster. The energy required represents only about 3% to 5% of the
available deuterium supply; clustering
will be relatively economical once the
necessary resources are committed to
the project. Clustering will probably be
common, if only because large comets
will be rare.
Clustering would allow relatively large
populations to exist, especially in the
inner Oort Cloud, where the photon flux
from the Sun will be fairly high and
consequent energy production levels
will be capable of supporting much
larger communities. Jones and Finney
have estimated that the largest practical
population for a cluster will be about
100,000, when the energy consumed in
transport between the dispersed habitats
of the cluster begins to strain the reserves of the community. Social factors
may also limit the size of large cluster-based communities.
In addition to clustering, there will
be other means by which the settlements
can enhance their economies. Their isolation in the depths of space will be a
relative thing; they will be in constant
communication with neighboring communities. The average separation between comets in the Cloud is thought
to be a few light-hours; between settlements it will be perhaps a light-day.
News, messages and other information
will flow back and forth across the
empty space between them.
Some settlements, particularly the
larger ones, may engage in some sort
of trade, both with the inner system and
among themselves. Initially, many
communities will need to import those
items that they cannot make for themselves. As they develop, they may consider more complex forms of trade; it
is certain the decision to expend the
time, energy and resources in long-distance commerce will be a complex
cost/benefit calculation.
Items for trade might include specialized technology, bioengineered species specifically tailored for conditions
in the Oort Cloud, computer and AI
programs, and information itself. Perhaps some communities will specialize
within a larger dispersed cluster or bloc
of trading communities.
Because of the constraints and limitation imposed by the environment, one
primary social concern of the Oort
Cloud communities will be the careful
regulation of the health and size of their
populations.
Until the settlement has developed the
skills and resource base to support
growth, some form of control will be
necessary to limit the size of the population. In very small, isolated populations, even the timing of reproduction
may need to be regulated, in order to
maintain an appropriate distribution of
age and sex.
Unless communities adopt fairly
stringent measures, the population will
inevitably grow. The members of the
settlement will then have to choose between a higher rate of resource consumption, making a commitment to
enhancing their resource base, or to assisting their excess population in establishing daughter settlements around other
comet nuclei.
Both static and growing communities
will also need to be concerned with the
genetic health of their populations.
Within the small, relatively isolated
gene pools of the Oort Cloud settlements, population genetics will become
a factor that will affect both everyday
life and the long-term viability of the
community.
Very early on, when a new community is being planned or established, a
major concern will be the “founder effect”—the skewing of the genetic composition of a population because its
founding members are very few. The
danger exists that the founding members
of a community may share too high a
proportion of deleterious genes that will
soon become reinforced in subsequent
interbreeding. This problem could be
largely eliminated by careful screening
during the planning and recruitment
stages for a new settlement. New colonists would in part be chosen to maximize genetic variation in the new
population, providing a sound base for
healthy future growth.
Founding populations can be very
low—perhaps as low as l0 or 20 individuals—if the original breeders are genetically diverse and share few common
deleterious genes. The negative effects
of early inbreeding can also be avoided
by social customs or other regulations
that prevent bad crosses, particularly
among close relatives.
The potential negative effects of inbreeding will remain, however, as the
settlement's population grows and becomes more uniform, but will be of
major concern only to very small, isolated groups. Both natural and artificial
selection will come into play before inbreeding could cause serious damage to
the health of the community. In nature.
inbreeding often results in a high level
of spontaneous abortions and early
deaths; natural selection operates to remove the bad crosses from the breeding
population. In healthy communities.
matings would be structured either by
intent or by social custom to minimize
the negative effects of inbreeding. It is
also important to remember that genetic
uniformity need not be a problem provided that any deleterious genes are
eliminated from the founding population and that any new negative traits
arising by mutation are culled or otherwise prevented from breeding. Genetic engineering techniques may also
be employed to maintain a healthy gene
pool.
The human consequences of such requirements for the maintenance of the
community's genetic health will be
great. The social tensions generated by
the practice of eugenics and genetic engineering may also be difficult to manage. However, there are other options
for communities that wish to avoid negative inbreeding, including out-breeding
with other settlements.
Out-breeding has the obvious positive
effect of increasing genetic variability.
But its practice also sen/es as a mechanism for complex social interaction as
well.
Prior to the terrestrial agricultural revolution, people tended to live within
small hunting and gathering bands of
about 20 to 30 men, women. and children. It has been noted by various social
anthropologists that groups of this size
still seem to be the most congenial to
humans worldwide in both their private
and professional lives. This preference
is no doubt part of our physical and social evolutionary heritage.
But humans also tended to form larger
social units, gathering into clans or
tribes numbering about 500 or so. Normally dispersed as individual bands, the
tribes maintained social cohesion through
intermarriage. Indeed, the size of such
groups is just about the minimum number needed to maintain a healthy diversity within the common gene pool and
to avoid inbreeding.
It is possible to anticipate, then, that
the dispersed communities of the Oort
Cloud may form similar social links. A
single community tending an extensive
mirror farm as described earlier could
form a viable, self-contained breeding
population by marriage exchanges between bands. In addition to preserving
the genetic health of the community,
such exchanges would serve to link the
bands into a large, cohesive social unit.
Just as dispersed tribes on Earth gathered periodically for important social
and religious observances, so too might
the dispersed bands of a comet-based
settlement gather their entire population
on occasion.
Out-breeding would also allow individuals whose reproduction might otherwise be restricted or forbidden to find
an alternative, providing an outlet for
any tensions that might arise. And if
such a place could not be found within
the tribe, there is also the possibility of
exchanges with other communities
around other nearby comets. Such exchanges would be more expensive in
terms of time and energy, but would
serve to cement social ties between settlements.
The necessity for monitoring gene
flow within a given population, along
with all the other shaping influences of
the deep space environment, will have
profound social consequences for the
Oort Cloud communities.
Habitat residents will be able to set
temperature, humidity, day length, the
weather, atmospheric pressure, even the
level of gravity according to their collective preference and the limitations of
human physiology. They may even
choose to live in zero gravity. Life style
and social values, the entire “world
view" of the Oort Cloud settlers will
be very different from those of any terrestrial culture.
Without diurnal or seasonal variations, their sense of time will differ.
Their perceptions and use of space may
also differ, and the ways in which private and public volumes are used and
arranged thereby altered. In a tightly
closed artificial environment, attitudes
toward clothing and nudity are likely to
change radically, as is the concept of
privacy.
In personal relationships, love, sex
and mating will all be quite separate.
Family structures are likely to be very
different when marriage or cohabitation
preferences may differ from permissible
genetic crosses. Breeding will be much
more of a social decision than it is on
Earth. Given a basic band-and-tribe social structure, extended families are
likely to be common. Communal or collective family arrangements may also
be common.
Social, political and administrative
systems will also change, and new ones
will arise. They will be shaped not only
by the age-old needs and limitations of
human social interaction, but also by
wholly new factors unique to the deep
space environment. Settlers in the Oort
Cloud will face the exciting challenge
of creating workable societies from
whole cloth.
As always, the basic social conflict
within these communities will be between the needs and constraints of society as a whole and the personal
freedom of individuals. Members of
these small, isolated communities will
be faced with a variety of constraints.
Restrictions on breeding practices
may be imposed by the community in
order to maintain a balanced, genetically healthy population. In very small
settlements,'even the timing of births
may be regulated in order to preserve
a balanced distribution of male and female, young, middle-aged and elderly.
Communities aiming for a low or static
population growth rate may impose
strict absolute limits on breeding until
the resource base has been developed
to support larger numbers.
Similarly, young people born and
raised in an Oort Cloud settlement may
face fairly tight constraints in their
choice of career or vocation. As in all
economies, the needs or demands of the
community will determine the types of
work available; career choices may
often be a matter of timing and happenstance. In small communities, where
age and gender distributions may have
to be carefully controlled, career choices
will be limited for the limited number
of youths available for apprenticeship:
they will be pressured to take the positions that need to be filled as they
come of age.
New settlements with undeveloped
capabilities, and smaller settlements
with few resources or a limited energy
supply may also impose some restraints;
small. isolated communities will probably be conservative in approving unnecessary expenditures of scarce
resources, thus limiting the range of
possible private and professional activity.
Social values are likely to have an
enormous shaping influence on the types
of social systems that develop in the
distant Oort Cloud communities. These
settlements, perhaps comprised of highly
interrelated clans, are likely to place a
high value on cooperation, consensus
decision making, and compromise. In
the hostile and unrelenting deep space
environment, where cooperation and
mutual interdependence will be crucial
to survival, they will feel a strong need
to maintain social harmony.
Members of such tightly knit communities will face a variety of social
pressures: they will be part of a symbiotic network of duties and obligations.
There will be ties to family and to tribe
or clan, in addition to the community
as a whole. Complex interrelationships
will arise when emotional and sexual
relations must be separated from breeding, as well as when family and friends
emigrate to other habitats and communities. As in Earthbound societies, education, in addition to training each
person for the complex task of deep
space survival, will probably also serve
as a primary means of inculcating the
community’s social values.
But there are other factors to counterbalance these pressures and constraints, to allow for the preservation of
individual freedoms. In a community
where every individual represents a
heavy investment in education and training, and a valuable pool of badly needed
skills and experience, rigid social controls such as ostracism, imprisonment,
or capital punishment seem unlikely; a
large range of social behavior will have
to be tolerated. Coercion would be difficult at best, especially in very small
communities with few resources or personnel to spare for “police actions”;
nonconformists and dissidents must be
allowed to find or to create an acceptable niche within the community. Larger
settlements, in which any one individual
plays a less vital role, may develop more
rigid social structures.
The Oort Cloud communities will
need to develop social and political
mechanisms to ensure the freedom to
express diversity and individual choice,
to avoid oppressive measures aimed at
enforcing unnecessary conformity to
arbitrary community standards, and to
eliminate or at least alleviate the negative consequences of community decisions.
It is likely a wide-variety of social
systems will develop among the Oort
Cloud settlements. In some, social pressures may win out. and a rigid, authoritarian social structure created. But the
need for consensus and close cooperation among community residents may
help prevent the development of oppressive. highly stratified societies, at
least among the smaller settlements.
Similarly, the necessities of cooperation
and mutual dependence will temper any
tendency toward extreme individualism.
Individuals will be expected to take responsibility for their actions and their
role in the community; both wild individualism and blind obedience to social
convention would be frowned upon.
In such a social context, within a culture that values diversity, mutualism,
and social harmony, current Western-style democracy may be considered inappropriate. Despite constitutional
guarantees, majority rule often enforces
homogeneity and suppresses minority
viewpoints. Democratic systems, in
which individuals are expected to “vote
in their own interests," might also foster
a divisiveness that small, isolated communities could ill afford.
The smaller band-and-tribe settlements may favor consensus decision
making, in which minority and dissident
viewpoints can be more easily accommodated. But such systems also have
a drawback: because everyone must
agree to the joint decision to reach a
consensus, community members may
feel pressured to “go along with the
group." If the pressures became strong
enough, they might foster a dangerous
and oppressive homogeneity.
Another communal decision-making
system that often appears among communities of closely-related, tribal peoples is the “hardship-on-no-one" arrangement. In such a system, the
emphasis is not so much on the final
decision reached as on the consequences
of each option. Decisions are often
based on finding the option that places
the least burden on the least number of
individuals, and working to alleviate
even those negative results of communal
decisions. For example, youths guided
toward a career specialty the community
deems important might be allowed to
pursue secondary specialties of their
own choosing.
A drawback to this system as well as
for consensus decision-making systems
is that they are often very time-consuming processes.
As on Earth. the Oort Cloud communities may choose to deal with some
social pressures by displacing them spatially. Nonconformists and dissidents in
one band may find a comfortable and
rewarding social niche in another habitat
within their native tribe. Although a single clustered community would have a
pool of shared communal values, each
habitat within the settlement might have
its own individual system, offering
enough diversity to accommodate and
alleviate most social frictions. As a last
resort. migration between settlements
would provide a social safety valve.
It thus seems likely that a variety of
social systems would arise among the
Cloud settlements. They will have to
respond to numerous needs and demands, seeking to find a balance between maintaining a stable, functional
society and personal freedom for individuals.
The size of the community will be an
important factor in its social development. The larger Oort Cloud settlements
will probably offer a wider range of social forms. They may be able to accommodate more competition and
divisiveness. Large communities, however. are also difficult to administer by
consensus, and may employ a form of
electronic democracy. Clustering, trade,
and the development of the settlement’s
resource base and capabilities would
create opportunities for the creation of
more diverse and complex societies. A
mosaic of many different social forms,
distributed throughout the settlement.
seems possible.
But even the largest of the Oort Cloud
communities will be quite small in comparison to the societies of billions that
will develop in the inner Solar System.
As the relatively compact inner core of
the system is developed, it will become
more tightly integrated socially and
economically, more centralized, and its
culture more homogeneous. Although
it may take some centuries, it is likely
that mass cultures with populations of
billions will eventually develop.
The small, dispersed communities of
the Oort Cloud will remain largely independent of the inner core governments and societies. Their potential for
diversity may offer a refuge for dissident
groups seeking to leave the mass societies of the inner Solar System.
Just as the relative isolation of the
Oort Cloud settlements from the inner
system and from each other will foster
social divergence and cultural diversity,
so, too, will it create the conditions necessary for biological divergence and evolutionary change. As we know from
terrestrial experience, reproductive isolation fosters such change—as Charles
Darwin observed when he visited the
Galapagos Islands as a young man. Diversity also fosters adaptive
radiation—the opening and exploitation
of new niches in the environment.
Many factors are likely to encourage
human evolutionary diversity in the
Oort Cloud. Despite all efforts, the
founder effect and random drift will
cause some changes in the small isolated
gene pools. Fortuitous beneficial mutations may be retained and encouraged
to spread, and perhaps enhanced by artificial means. Eugenics and genetic engineering are likely to be well integrated
into the social and economic life of the
settlements, both as a means of maintaining a healthy gene pool and in the
production of goods and trade items.
Bioengineered products may be common.
Social values will also be very different, and the distant Oort Cloud communities will feel much less keenly the
social. cultural and governmental pressures that might prevent biological experimentation among the inner system
cultures. Their environment and lives
will be very different; they may choose
to remake themselves in their own image. to adapt themselves to the needs
of living in deep space.
Estimates of the time required for
natural selection to produce a new species of human being range upward toward a million years. However. in the
small. isolated gene pools of the Oort
Cloud settlements. perhaps encouraged
by directed breeding practices and human genetic engineering. it would not
take long for any chances to become
widespread. Minor changes might take
a few generations—perhaps a century
—to become entrenched. Major structural or biochemical alterations would
probably be attempted more slowly, on
a scale of many hundreds or thousands
of years. But it is clear that a new species of genus Homo could appear within
about l0,000 years.
The exploration and settlement of the
far reaches of the Oort Cloud will also
have a profound effect on the course of
human migration to other star systems.
Simply reaching the Oort Cloud and
establishing viable, long-term settlements there will spur the development
of the technology required for interstellar flight. Although the propulsion systems needed for journeys of tens of
hundreds of light-years will differ from
those used to travel only one or two, the
opening of the Oort Cloud will serve as
the proving ground for such systems.
as well as the development of closed
artificial ecosystems. The social experiments of the Cloud communities may
also play an important role in starship
design.
Though many interstellar missions
may be launched by the large and
wealthy inner Solar System cultures.
others may depart from construction
sites or launch points in the far reaches
of Sol's Oort Cloud. which stretches out
to perhaps two light-years—a significant head start. Such ships may travel
directly across the deep oceans of space
to reach other stars, but others may visit
way stations during their journey: comets drifting in interstellar space.
Estimates of the total amount of material ejected from the Solar System during its formation and subsequent
evolution range from as low as 5 to 25
times the mass of the Earth up to l00
or even l,000 Earth masses. Presumably, other stars would produce roughly
similar numbers of rogue comets. Interstellar space should be strewn with
small. isolated islands.
Distances between these drifting islands are difficult to estimate. They may
be no more widely spaced that the comets of the Oort Cloud—about 20 A.U.
Other estimates range up to hundreds
of thousands of A.U. between these
wandering interstellar comets.
Some of these interlopers are bound
to be found within Sol’s own Oort
Cloud, working their way free of the
Sun’s grip, at perhaps one in every several thousand. Relative velocities between Solar and interstellar comets will be low, and it will be tempting for Oort Cloud residents to hitch a ride outward—perhaps farther out into the permanent Cloud, perhaps out into
interstellar space. Drifting outward at
about 10 km/s or about 2 A.U. per year,
they will make slow progress indeed.
In 50,000 years they will be halfway to
the nearest stars. But by then they will
be wholly adapted to life in interstellar
space and will perhaps not be too concerned with visiting other star systems.
One could imagine the human species
slowly spreading throughout the galaxy
in this way, but it seems more likely
humanity will move from star to star by
fast ship, followed by slowly expanding
waves of comet-based settlements meeting and overlapping in the voids between the settled stars.
Other, more daring Oort Cloud communities may choose to take their home
comet with them. If the slow outward
drift seems too slow to them, and fast
ships too expensive, they may attempt
to launch themselves out of the Solar
System via a gravity-assist maneuver
close to the Sun.
Large rocket engines burning hydrogen and oxygen, or perhaps a mass
driver, could be used to dissipate the
comet’s orbital velocity using only a
fraction of the comet’s resources. During the long fall toward the Sun, the
adventurers could use the rapidly increasing flux of solar energy to produce
huge stores of hydrogen, to be consumed in fuel cells to provide power
during the long interstellar cruise. The
mirror farms or other solar power collectors would also serve to shield the
comet nucleus from the Sun.
After curving around Sol, the comet
would leave the system with a velocity
of 100 to 150 km/s, or about 1 light-year
every 2,000 years. Travel times between star systems would be on the order of 10,000 years—far shorter than
that of drifting “wild” comets. During
the interstellar journey the settlers would
live as they had in the Oort Cloud, relying on their comet’s stock of deuterium or on hydrogen produced when
close to the sun. In the target system,
a small band of colonists would be
dropped off aboard habitats constructed
during the long cruise, before rounding
the new star and heading off toward a
new destination.
It thus seems likely that human expansion into the comet archipelago of
the distant reaches of the Oort Cloud
will only be the first step toward expansion to other star systems. Comet-based settlements will be humanity's
stepping stones to the stars. across the
far-flung islands in the deep ocean of
interstellar space.
Scale is in Astronomical Units (note Earth is at "1"). Scale is logarithmic
Please note that is a logarithmic scale. Each tick mark is evenly spaced, but each interval is ten times as large as the previous one. That is why the solar system is not a dot in the center.
Interstellar Colonization
When it comes to interstellar colonizations, the distances are so long, the delta V requirements so astronomical, and the travel times are so prolonged that you'd better be blasted sure there is actually a planet there to colonize.
Excitingly the astronomical state of the art has advanced to the point where they can actually detect the presence of extrasolar planets. Currently the NASA Exoplanet Archive is listing 3,431 of the sightings as "confirmed."
The Planetary Habitability Laboratory at the University of Puerto Rico at Arecibo continually studies the data, and has a small number classified as "Conservatively Potentially Habitable Exoplanets" and a larger number classified as "Optimistically Potentially Habitable Exoplanets". Please note that "habitable" means "it is not totally impossible to live there." It does NOT mean it is a tropical paradise, or even that it won't kill you if you step out of the spacecraft in your shirt-sleeves.
"Conservatively Potentially Habitable Exoplanets" means very likely to be of rocky composition (instead of being a worthless gas giant) and very likely to maintain surface liquid water (instead of being permanent ice or pure life steam). The definition of "rocky composition" is planet radius between 0.5 and 1.5 Earth radii and planet minimum mass between 0.1 and 5.0 Earth masses. The definition of "surface liquid water" is planet orbiting within the conservativehabitable zone.
"Optimistically Potentially Habitable Exoplanets" has standards that are a bit more lax. This means the planet is less likely to have a rocky composition and less likely to maintain surface liquid water. The definition of "rocky composition" is planet radius between 1.5 and 2.5 Earth radii and planet minimum mass between 5.0 and 10.0 Earth Masses (i.e., a "super-earth") The definition of "surface liquid water is a planet orbiting within the optimistic habitable zone.
As of 2016 these are the conservatively and optimistically potentially habitable planets listed by the Planetary Habitability Laboratory:
Type - PHL's classification of planets that includes host star spectral type (F, G, K, M), habitable zone location (hot, warm, cold) and size (miniterran, subterran, terran, superterran, jovian, neptunian) (e.g. Earth = G-Warm Terran, Venus = G-Hot Terran, Mars = G-Warm Subterran).
Mass - Minimum mass of the planet in Earth masses (Earth = 1.0 ME). Estimated for a pure iron, rocky, and water composition, respectively, when not available.
Radius - Radius of planet in Earth radii (Earth = 1.0 RE). Estimated for a pure iron, rocky, and water composition, respectively, when not available.
Flux - Average stellar flux of the planet in Earth fluxes (Earth = 1.0 SE).
Teq - Equilibrium temperature in kelvins (K) assuming a 0.3 bond albedo (Earth = 255 K). Actual surface temperatures are expected to be larger than the equilibrium temperature depending on the atmosphere of the planets, which are currently unknown (e.g. Earth mean global surface temperature is about 288 K or 15°C).
Period - Orbital period in days (Earth = 365 days).
Distance - Distance from Earth in light years (ly).
ESI - Earth Similarity Index, a measure of similarity to Earth that summarizes how similar are these planets to the stellar flux, mass, and radius of Earth (Earth = 1.0). Results are sorted by this number. Planets more similar to Earth are not necessarily more habitable, since the ESI does not consider all factors necessary for habitability.
I took the stars that were closer than 13 parsecs (42 light-years) and played with the data. I tried to make some connection charts to show the direction of colonization. Note that there are about 900 known stars in this volume. I am trying to make a baby-step map with the path between the zillions of empty stars leading to the good ones. This is going to take a while so be patient.
Closest Known Habitable Exoplanets
as of 2016
Node map displaying distance between each star and its two closest neighbors
Distances are in Parsecs (deal with it, multiply by 3.26 for light-years)
Data massaged by a Python program I wrote, autoformatted by the amazing free software yEd, and colorized by me using Photoshop.
Closest Known Habitable Exoplanets
as of 2016
3D star map with Z axis suppressed
Units are in Parsecs (deal with it, multiply by 3.26 for light-years)
X-Y plane is plane of galaxy, positive X axis points at galactic core
Made by Winchell Chung (me) using an ancient C++ program I wrote when dinosaurs roamed the Earth click for larger image
Closest Known Habitable Exoplanets
as of 2016
3D star map viewed at an angle
X-Y plane is plane of galaxy, positive X axis points at galactic core
Made by Winchell Chung (me) using an ancient C++ program I wrote when dinosaurs roamed the Earth
Closest Known Habitable Exoplanets
as of 2016
Node map displaying distance between each star and its two closest neighbors, but including the zillions of stars with no known habitable planets. Habitable planets are circles, rest are rectangles. Distances are in Light-years
Data massaged by a Python program I wrote, autoformatted by the amazing free software yEd click for larger image