Now we are really sailing off into terra incognito. "Here be dragons" and all that. But if you have starships, you almost have to have aliens (Isaac Asimov's Foundation trilogy being the most notable exception). The "science" is called Astrobiology, the famous "science in search of a subject". Unfortunately it only offers vague generalities. You can keep up on the latest news, but for now if you want aliens, you are going to have to create them yourself.

Suggested reading includes The Encyclopedia of Science Fiction's entry on "Aliens", Steve Colgan's Worlds of Possibility blog, Life Everywhere by David Darling, The Science of Aliens by Clifford Pickover and Aliens and Alien Societies by Stanley Schmidt.


[first use unknown]

Sometimes contrasted with `sentient' because even low animals can feel. `sapient' is usually an adjective, `sophont' usually a noun.


[first use unknown, but goes back at least to 1940s]

General SF term for an extraterrestrial or alien possessing human-level intelligence (see sophont).

Etymologically, and in mainstream English the word means "feeling" but is rare and now archaic.


[From Poul Anderson's `Polesotechnic League' stories, going back at least to 1963]

An evolved biological intelligence. Implies human-level cognitive and linguistic ability but not necessarily tool use. More specific and etymologically correct than sentient. Still less common than that term, but has been used by multiple writers.

From AN SF GLOSSARY by Eric S. Raymond (2006)

sapient, adjective \ˈsā-pē-ənt, ˈsa-\

Possessing or expressing great sagacity

sentient, adjective \ˈsen(t)-sh(ē-)ənt, ˈsen-tē-ənt\

Able to feel, see, hear, smell, or taste. Responsive to or conscious of sense impressions. Aware

ALIENS. Intelligent races who are not EARTH HUMANS. The term as such is never used for non-intelligent species, however unearthly, though in TECHJARGON these may be called Alien Life Forms. Nor is it used for Earth Humans who must register with the immigration service. In general, Aliens fall into two distinct groups, REALLY ALIENS and ALIENS WITH FOREHEAD RIDGES.

HIVE ENTITIES, Giant Insectoids (who may also be Hive Entities), and Blobs of Protoplasm. The occasional intelligent bear or radish may also appear, or practically anything else. Except for the Energy Beings, most seem to be hydrocarbon life forms, but methane breathers who thrive at -200 C will sometimes turn up.

What they all have in common is that they are Really Alien. Exosemanticists have their work cut out understanding them, and exopsychologists in figuring out what they're all about. Relations between humans and Really Aliens are necessarily limited, since we have so little in common with them. Only rarely will anybody get to know one on a personal level. TRADE with them is sporadic, and even WARFARE seems less frequent than it used to be in the GOLDEN AGE. This is partly because it is not clear what we would fight them over, and partly because they may have an alarmingly high TECHLEVEL, making war with them a dangerously one-sided proposition. Dangerous at least for us. See COSMIC BACKGROUND HISTORY.

HOLLYWOOD SCIFI - than Really Aliens, these are species that look almost exactly like Earth Humans, except for some distinguishing visible feature such as, well, forehead ridges, or odd-shaped ears, or whatever. Sometimes they look rather less like humans, in which case (if friendly) they often resemble large teddy bears.

Not only do Aliens with Forehead Ridges mostly look like Earth Humans, they tend to act like Earth Humans as well, or at least one particular (real or speculative) Earth Human culture. A particular race of Aliens with Forehead Ridges may all have a culture like that of medieval Japan, or one based entirely on music, but you will very rarely find more than one culture per species. (The Vulcans and Romulans of Trek fame are a rare exception.)

Because of the similarity (or at least comprehensibility) of cultures, Earth Humans can have far more complex and intimate relations with Aliens with Forehead Ridges than with Really Aliens. We can not only communicate, Trade, and fight, but form joint business ventures, cheat each other at cards, and even fall in love.

Indeed, Aliens with Forehead Ridges raise a profound question in evolutionary biology. Convergent evolution might well produce a generally humanoid body plan, just as sharks and dolphins have a similar overall configuration. But Aliens with Forehead Ridges have much more than a general similarity to Earth Humans. They have the same secondary sex traits - as species-specific as you can get. Only their males have much facial hair, and their females often have bodacious figures. Often, indeed, they are INTERBREEDABLE species. This leads to some speculation that they may be of Earth Human descent. (Or else Earth Humans are descended from them, though this raises troublesome questions about chimpanzees.)

Perhaps because of these awkward issues, Aliens with Forehead Ridges have become much less common in written SF (save for media tie-ins) than they were some decades ago. In written SF, the KNOWN GALAXY seems increasingly to be inhabited only by Earth Humans. However, Aliens with Forehead Ridges continue to thrive in Hollywood Scifi. This is for an obvious reason: the audience wants aliens of some sort, and Aliens with Forehead Ridges are the only kind that can be played by members of the Screen Actors' Guild.

Alien Biology

What Is Life?


One of the first ways in which we learn to classify objects is into two groups: 1. living and 2. nonliving.

In casual encounters with the material universe, we rarely feel any difficulty here, since we usually deal with things that are clearly alive, such as a dog or a rattlesnake; or with things that are clearly nonalive, such as a brick or a typewriter.

Nevertheless, the task of defining "life" is both difficult and subtle; something that at once becomes evident if we stop to think.

Consider a caterpillar crawling over a rock. The caterpillar is alive, but the rock is not; as you guess at once, since the caterpillar is moving and the rock is not. Yet what if the caterpillar were crawling over the trunk of a tree? The trunk isn't moving, yet it is as alive as the caterpillar. Or what if a drop of water were trickling down the trunk of the tree? The water in motion would not be alive, but the motionless tree trunk would be.

It would be expecting much of anyone to guess that an oyster were alive if he came across one (for the first time) with a closed shell. Could a glance at a clump of trees in midwinter, when all are standing leafless, easily distinguish those which are alive and will bear leaves in the spring from those which are dead and will not? Is it easy to tell a live seed from a dead seed, or either from a grain of sand?

For that matter, is it always easy to tell whether a man is merely unconscious or quite dead? Modern medical advances are making it a matter of importance to decide the moment of actual death, and that is not always easy.

Nevertheless, what we call "life" is sufficiently important to warrant an attempt at a definition. We can begin by listing some of the things that living things can do, and nonliving things cannot do, and see if we end up with a satisfactory distinction for this particular twofold division of the Universe.

1. A living thing shows the capacity for independent motion against a force. A drop of water trickles downward, but only because gravity is pulling at it; it isn't moving "of its own accord." A caterpillar, however, can crawl upward against the pull of gravity.

Living things that seem to be motionless overall, nevertheless move in part. An oyster may lie attached to its rock all its adult life, but it can open and close its shell. Furthermore, it sucks water into its organs and strains out food, so that there are parts of itself that move constantly. Plants, too, can move, turning their leaves to the sun, for instance; and there are continuous movements in the substance making it up.

2. A living thing can sense and it can respond adaptively. That is, it can become aware, somehow, of some alteration in its environment, and will then produce an alteration in itself that will allow it to continue to live as comfortably as possible. To give a simple example, you may see a rock coming toward you and will quickly duck to avoid a collision of the rock with your head. Analogously, plants can sense the presence of light and water and can respond by extending roots toward the water and stems toward the light. Even very primitive life forms, too small to see with the unaided eye, can sense the presence of food or of danger; and can respond in such a way as to increase their chances of meeting the first and of avoiding the second. (The response may not be a successful one; you may not duck quickly enough to avoid the rock—but it is the attempt that counts.)

3. A living thing metabolizes. By this we mean that it can eventually convert material from its environment into its own substance. The material may not be fit for use to begin with, so it must be broken apart, moistened, or otherwise treated. It may have to be subjected to chemical change so that large and complex chemical units (molecules) are converted into smaller, simpler ones. The simple molecules are then absorbed into the living structure; some are broken down in a process that liberates energy; the rest are built up into the complex com­ ponents of the structure. Anything which is left over, or not usable, is then eliminated. The different phases of this process are sometimes given separate names: ingestion, digestion, absorption, assimilation, and excretion.

4. A living thing grows. As a result of the metabolic process, it can convert more and more of its environment into itself, becoming larger as a result.

5. A living thing reproduces. It can, by a variety of methods, produce new living things like itself.

Any object which possesses all these abilities would seem to be clearly alive; and any object which possesses none of them is clearly nonalive. Yet the situation is not at all clear-cut.

An adult human being no longer grows and many individuals never have children, but we still consider them alive even though they no longer grow and do not reproduce. Well, growth takes place at some time in life and the capacity for reproduction is potentially there.

A moth senses a flame and responds, but not adaptively; it flies into the flame and dies. Ah, but the response is ordinarily adaptive, for it is toward the light. The open flame is an exceptional condition.

A seed does not move, or seem to sense and respond—yet give it the proper conditions and it will suddenly begin to grow. The germ of life is there, even though dormant.

On the other hand, crystals in solution grow, and new crystals form. A thermostat in a house senses temperature and responds adaptively by preventing that temperature from rising too high or falling too low.

Then there is fire, which may be considered as eating its fuel, breaking it down to simpler substances, converting it into its own flaming structure, and eliminating the ash which it can't use. The flame moves constantly and, as we know, it can easily grow and reproduce itself, sometimes with catastrophic results.

Yet none of these things are alive.

We must therefore look at the properties of life more deeply, and the key lies in something stated earlier: that a drop of water can only trickle downward in response to gravity, while a caterpillar can move upward against gravity.

There are two types of changes: one which involves an increase in a property called entropy by physicists, and one which involves a decrease in that property. Changes that increase entropy take place spontaneously; that is, they will "just happen by themselves." Examples are the downhill movement of a rock, the explosion of a mixture of hydrogen and oxygen to form water, the uncoiling of a spring, the rusting of iron.

Changes that decrease entropy do not take place spontaneously. They will occur only through the influx of energy from some source. Thus, a rock can be pushed uphill; water can be separated into hydrogen and oxygen again by an electric current; a spring can be tightened by muscular action, and iron rust can be smelted back to iron, given sufficient heat. (The entropy decrease is more than balanced by the entropy increase in the energy source, but that is beside the point here.)

In general, we are usually safe in supposing that any change which is produced against a resisting force, or any change that alters something relatively simple to something relatively complex, or that alters something relatively disorderly to something relatively orderly, decreases entropy, and that none of these changes will take place spontaneously.

Yet the actions most characteristic of living things tend to involve a decrease in entropy. Living motion is very often against the pull of gravity and of other resisting forces. Metabolism, on the whole, tends to build complex molecules out of simple ones.

This is all done at the expense of energy drawn from the food or, ultimately, from sunlight, and the total entropy change in the system including food or the sun is an increase. Nevertheless, the local change, involving the living creature directly, is an entropy decrease.

Crystal growth, on the other hand, is a purely spontaneous effect, involving entropy increase. It is no more a sign of life than is the motion of water trickling down a tree trunk. Similarly, all the chemical and physical changes in a fire involve entropy increase.

We become safer, then, if we define life as the property displayed by those objects which can—either actually or potentially, either in whole or in part—move, sense, and respond, metabolize, grow, and reproduce in such a way as to decrease its entropy store.

Since one sign of decreasing entropy is increasing organization (that is, an increasing number of component parts interrelated in increasingly complex fashion), it is not surprising that living objects generally are more highly organized than their nonliving surroundings. The substance making up even the most primitive life form is far more variegated and complexly interrelated than the substance making up even the most complicated mineral.

What about life forms radically different from ours, based on altogether different kinds of chemistry, living in completely hostile (to us) environments? Could there conceivably be a silicon-based life, in place of our own carbon-based one, on a hot planet like Mercury? Could there be an ammonia-based life, in place of our own water-based one, on a cold planet like Jupiter?

We can only speculate. There is absolutely no way to tell at present.

We can wonder, though, whether human astronauts, ex­ploring a completely alien planet, would be sure of recog­nizing life if they found it. What if the structure were so dif­ferent, the properties so bizarre, that they would fail to realize they were facing something sufficiently complex and organized to be called living?

For that matter, we may be facing such a necessary broadening of the definition right here on Earth in the near future. For some time now, men have been building machines that can more and more closely imitate the action of living things. These include not merely objects that can imitate physical manipulations (as when electric eyes see us coming and open a door for us) but also objects that can imitate men's mental activities. We have computers that do more than merely compute; they translate Russian, play chess, and compose music.

Will there come a point when machines will be complex enough and flexible enough to reproduce the properties of life so extensively that it will become necessary to wonder if they are alive?

If so, we will have to bow to the facts. We will have to ignore cells and DNA and ask only: What can this thing do? And if it can play the role of life, we will have to call it living.

From LIFE AND TIME by Isaac Asimov (1979)

Our main point is that for many modern readers, a violation of the laws of thermodynamics by the author can spoil a story just as effectively as having Abraham Lincoln changing a set of spark plugs in a historical novel.

Therefore, if we travel to Mars in a story, the vehicle must operate either along physical laws we currently think we know, or at least on more or less convincing extrapolations of those laws. Furthermore, when we get there the Martians, not to mention their lapdogs, saddle horses, dinner steaks, and rheumatism, must not strike too jarring a set of notes against the background which author and reader are, it is to be hoped, visualizing together. It is permissible and even desirable to take the reader by surprise with some of these details, of course. However, his reaction to the surprise should be the urge to kick himself for failing to foresee the item, rather than resentment at the author’s ringing in a new theme.

It follows that the “hard” science fiction writer must have at least an informed layman’s grasp of biochemistry and ecology.

Even in this narrowed realm, there would seem to be two basic lines of procedure for the storyteller who needs nonhuman characters and other extraterrestrial life forms. The two are not mutually exclusive; they overlap heavily in many ways. Nevertheless they represent diiferent directions of attack on the problem, one of which is more useful if the basic story is already well set up in the author’s mind, while the other is of more use in creating and developing the story possibilities themselves.

In the first case, the qualities of the various life forms have to a considerable extent already been determined; they are demanded by the story events. Excellent recent examples occur in some of Keith Laumer’s “Retief” novels, such as the wheeled metallic natives of Quopp in Retiefs War and the even more peculiar Lumbagans in Retief's Ransom.

In other words, if the savages of Fomalhaut VII are going to kidnap the heroine by air, they must be able to fly with the weight of a human being. If the hero is going to escape from a welded-shut steel safe with the aid of his friend from Regulus IV, the friend must be able either to break or dissolve the steel, or perhaps get into and out of such spaces via the fourth dimension. These are part of the starting situation for the author, who must assume that the creations of his intellect do have the requisite powers. If he is really conscientious (or worries greatly about being laughed at by scientific purists) he will also have in the background an ecological system where these powers are of general use and which contains other creatures whose behavior and abilities fit into the same picture.

Flying must be easier on Fomalhaut VII than on Earth. Perhaps the air is denser, or the gravity weaker, or native muscle more efficient and powerful. Ordinary evolution will have been affected by the fact that flight by larger animals is possible, so there will be a much wider range of large flying organisms than we know on Earth. There will be carnivores, herbivores, and omnivores. There will be a wide range of attack and defense systems among these beings. In short, there will be more ecological niches available to large flyers, and it may be confidently expected that evolution will fill them.

Of course there will be limits, just as on Earth. Vertebrates have been flying for nearly two hundred million years, which for most of the forms involved means about the same number of generations; but we have no supersonic birds on this planet. Even the insects, which have been flying a good deal longer, haven’t gotten anywhere near Mach 1; the eight-hundred-mile-per-hour deer-bot fly which appeared in the literature during the 1930s was very definitely a mistaken observation. It would seem that our biochemistry can’t handle energy at the rates needed for supersonic flight. It is the evident existence of these limits which forces the author to assume a difierent set of conditions on the Fomalhaut planet.

Similarly, fourth-dimensional extrusion will have to be general on Regulus IV, and the local ecology will reflect the fact. There will be hide-and-seek techniques among predators and prey essentially incomprehensible to human beings, and therefore a tremendous challenge to the imagination and verbal skill of the writer.

If fourth-dimensional extrusion is not the answer chosen, then the ability to dissolve iron may have developed—which implies that free iron exists on the planet under circumstances that make the ability to dissolve it a useful one. Or…

There is, of course, a limit to the time any author can spend working out such details. Even I, a spare-time writer who seldom saddles himself with deadlines, spend some of that spare time writing the story itself. In any kind of story whatever, a certain amount of the background has to be filled in by the reader’s/listener’s imagination. It is neither possible nor desirable to do everything for him. In this first line of attack, the time and effort to be spent on detail work are reasonably limited.

Even the second line, which is my favored technique, has its limits in this respect. However, it does encourage the author to spend longer in the beginning at the straight slide-rule work. As it happens, I get most of the fun out of working out the physical and chemical nature of a planet or solar system, and then dreaming up life forms which might reasonably evolve under such conditions. The story (obviously, as some critics have been known to remark) comes afterward. My excuse for using this general technique, if one is needed, is twofold.

First, I find it more fun. This will carry smaller weight for the author who is writing for a living.

Second, it is not unusual for the nature of the planet and its life forms, once worked out, to suggest story events or even an entire plot line which would never otherwise have occurred to me. This fact should carry some weight even with the more fantasy-oriented writer, who cares less about “realism.”

I do have to admit that realism, or at least consistency, is a prime consideration with me; and as I implied some pages back with the Abraham Lincoln metaphor, even the most fantastic story can jar the most tolerant reader if the inconsistency is crude enough—anachronism is only one form of inconsistency. This sort of realism in life design has to be on at least two levels: biochemical and mechanical.


It is true that we do not yet know all the details of how even the simplest life forms work. It is still defensible to build for story purposes a creature that drinks hydrazine, and say that no one can prove this impossible. Beyond a certain point, however, I have to dismiss this as ducking out the easy way—sometimes justifiable for storytelling purposes, but jarring on the scientific sensibility. Some facts of life are very well known indeed, and to contradict them, a very good excuse and very convincing logic are needed.

For example, any life form converts energy from one form to another. On our own planet, the strongest and most active creatures use the oxygen in the atmosphere to convert food materials to carbon dioxide and water. The chemical reactions supply the needed energy. Obviously, the available oxygen would be quickly used up if there were not some other set of reactions to break down the water and carbon dioxide (actually it's the water, on this planet) to replace what is exhausted. It takes as much energy (actually more must be supplied, since no reaction is completely efiicient) to break up a molecule into its elements as is released by forming it from these elements, and any ecological system must have a long-term energy base. On this planet, as is common knowledge, the base is sunlight. There seems no need here to go into the very complicated details; few people get through high school these days (I’d like to believe) without at least a general idea of photosynthesis.

In passing, some people have the idea that fish violate this basic rule, and are some sort of perpetual motion machine, because they “breathe water.” Not so; fish use the elemental O2 gas supplied as usual by photosynthesis and dissolved in water, not the O in the H2O. Aquarium suppliers are perfectly justified in selling air pumps; they are not exploiting the innocent fish-fanciers.

Substitutes for free oxygen in energy-releasing reactions are perfectly possible chemically, and as far as anyone can tell should be possible biologically (indeed, some Earthly life forms do use other reactions). There is no chemical need for these substitutes even to be gases; but if the story calls for a nonhuman character to be drowned or strangled, obvious gaseous candidates are fluorine and chlorine. The former can run much more energetic reactions than even oxygen, while chlorine compares favorably with the gas we are all hooked on. (That last seems a justified assumption about the present readers. If it is wrong, please come and introduce yourself!)

Neither chlorine nor fluorine occurs free on this planet; but, as pointed out already, neither would oxygen if earthly life were not constantly replenishing it by photosynthesis. It has been pointed out that both these gases are odd-numbered elements and therefore in shorter universal supply than oxygen. This may well be true; but if some mad scientist were to develop a microorganism able to photosynthesize free chlorine from the chloride ion in Earth’s ocean, it wouldn’t have to do a very complete job to release as much of this gas as we now have of oxygen. Breaking down ten percent or so of the ocean salt would do the trick. Present-day biological engineering is probably not quite up to this job yet, but if you want to use the idea in a story be my guest. I don’t plan to use it myself; the crazy-scientist story is old hat now except in frankly political literature, and even the germ-from-space has been pretty well worked to death in the last forty years.

As mentioned, there is no chemical reason why the energy-producing reactants have to include gases at all. Oxidizing a pound of sugar with nitric acid will yield more energy than oxidizing the same pound with oxygen (if this seems improbable at first glance, remember the bond energy of the N2 molecule which is one of the products of the first reaction). True, raw concentrated nitric acid is rather hard on most if not all Terrestrial tissues; but we do handle hydrochloric acid—admittedly in rather dilute form in spite of the antacid-tablet ads—in our own digestive systems. I see little difiiculty in dreaming up a being able to store and utilize strong oxidizers in its system. The protective mucus our own stomachs use is only one of the possibilities.

Many chemical sources of energy are therefore possible in principle for our life forms; but one should be reasonably aware of the chemistry involved. Water or iron oxide would not be good fuels under any reasonable circumstances; there are admittedly some energy-yielding reactions involving these, but they call for special and unlikely reactants like sodium or fluorine—and if those reactants are around, we could get much more energy by using them on other substances. To get more fundamental, sunlight is not the only conceivable energy base for an ecological pyramid. It is, however, by far the most likely, assuming the planet in question has a sun. Remember, the energy source must not only be quantitatively large enough; it must be widely available in both space and time, so that life can originate and evolve to complex forms. Radioactivity and raw volcanic heat are both imaginable, but the first demands rather unusual conditions if much of it is to be on hand. Vulcanism, if Earth is a fair example, tends to be restricted in space at any one time and in time at any one location, a discouraging combination. Also, radioactive energy in its most direct form comes in high-energy quanta, furnishing an additional complication to the molecular architecture problem to be considered next.

It seems pretty certain that life, as well as needing energy, must be of complex structure. It has to do too many things for a simple machine. An organism must be able to absorb the chemicals needed for its energy, and carry out at the desired rate the reactions which they undergo. It must develop and repair its own structure (immortal, invulnerable, specially created beings are conceivable, but definitely outside the realm of this discussion). It must reproduce its own structure, and therefore keep on file a complete set of specifications—which must itself be reproducible.

Whatever mystical, symbolic, and figurate resemblances there may be between a candle flame and a living creature, the concrete differences between them seem to me to constitute a non-negotiable demand for extreme complexity in the latter.

On Earth, this complexity involves the phosphate-sugar-base polymers called popularly DNA and RNA for specifications, polypeptide and polysaccharide structures for most of the machinery, and—perhaps most fundamentally—the hydrogen bond to provide structural links which can be changed around as needed without the need for temperatures high enough to ruin the main framework.

I see no reason why other carbon compounds could not do the jobs of most of these, though I cannot offhand draw formulas for the alternates. The jobs in general depend on the shapes of the molecules, or perhaps more honestly the shapes of the force fields around them; these could presumably be duplicated closely enough by other substances.

I am rather doubtful that the cruder substitutions suggested by various writers, such as that of silicon for carbon, would actually work, though of course I cannot be sure that they wouldn’t. We have the fact that on Earth, with silicon many times more plentiful than carbon, life uses the latter. The explanations which can be advanced for this fact seem to me to be explanations as well of why silicon won’t work in life forms. (To be more specific: silicon atoms are large enough to four-coordinate with oxygen, and hence wind up in hard, crystalline, insoluble macromolecular structures—the usual run of silicate minerals. The smaller carbon atom, able to react with not more than three oxygens at once, was left free to form the water-reactive carbon dioxide gas.) True, some Earthly life such as scouring rushes, basket sponges, and foraminifera use silicon compounds in skeletal parts; but not, except in trace amounts, in active life machinery.

I also doubt that any other element could do the job of hydrogen, which I am inclined to regard as “the” essential life element, rather than the more popular carbon. Life machinery is complex, but it must have what might be called “moving parts” —structures which have to be altered in shape, or connected now one way and now another. A chemical bond weak enough to be changed without affecting the rest of the machine seems a necessity—a gasoline engine would be hard to design if springs didn’t exist and a cutting torch were needed to open the valves each cycle. The hydrogen bond (I don’t propose to explain what this is; if you don’t know, consult any beginning chemistry text) is the only thing I know of which meets this need on the molecular level.

This, however, is not much of a science fiction problem. Something like 999 out of every 1000 atoms in the universe are hydrogen atoms; even Earth, which seems to be one of the most thoroughly dehydrogenated objects in the observable part of space, has all it needs for an extensive collection of life forms. I suspect it will generally be easier for an author to use hydrogen in his homemade life forms than to work out a credible substitute.

To finish with the fundamental-structure level, one must admit that very complex electric and magnetic field structures other than those supplied ready-formed by atoms and molecules are conceivable. At this point, it really is necessary to fall back on the “we can’t say it’s impossible” excuse. Personally I would develop such life forms only if my story demanded of them some ability incompatible with ordinary matter, such as traveling through a telephone wire or existing without protection both in the solar photosphere and a cave on Pluto. At this point, simple scientific realism fades away, and I must bow out as an expert. It’s not that I’m above doing it; it’s just that practically anyone else could do it equally well.


The other principal basis for believability of life forms lies in the field of simple mechanics, much more common sense than biochemistry. For example, in spite of Edgar Rice Burroughs’s calots, a fast-running creature is far more likely to have a few long legs than a lot of short ones. Whether muscle tissue on Planet X is stronger or weaker than on Earth, muscular effort will be more efiiciently applied by fewer, longer strokes. Even if the evolutionary background for some reason started off with the ten legs (e.g., high gravity), I would expect an organism specializing in speed to develop two, or perhaps four, of them to greater length and either have the others degenerate or put them to other uses as the generations rolled on.

On the same general principle, if the creature lives on grass or the local ecological equivalent, it will probably not have much of a brain. If it doesn’t have to catch food or climb trees, it will lack any equivalent of a hand—in short, any anatomical part an organism has should either be useful to that creature in its current life, or be the degenerate remnant of something useful to its remote ancestors. Exceptions to this rule among Earthly life forms are hard to find, and may be only apparent; we simply don’t know the purpose of the organ in question. A former example was the “sail” on the backs of some Permian reptiles, now believed to be a temperature control device.

In addition to being useful itself, a structure must have been at least slightly useful through its early stages of development; it is hard to believe that a single mutation would produce a completely developed ear, but any ability to sense pressure variations would clearly be useful to an animal. Creatures must have existed showing development all the way from a slightly refined sense of touch to the present organ capable of detecting and recognizing a tiger’s footfall in a windy forest—or an out-of-tune flute in an orchestra.

Similarly with the eye. There are now alive on Earth creatures with light-sensitive organs ranging from the simple red spot of the single-celled Euglena, through pinhole cameras with complex retinas (some cephalopods), to the lens-and-iris-equipped diffraction-limited organ of most mammals and birds, complete with automatic focusing. There are also examples of parallel evolution which were good enough to help their owners survive all the way along the route: the compound mosaic-lens eyes of arthropods and, I have heard, at least one organism that scans the image of a single lens by moving a single retinal nerve over the field.

But eyes and ears are hardly original enough for a really imaginative science fiction story. What other long-range senses might an organism evolve? Could an intelligent species develop without any such sense? If so, what would be that creature’s conception of the universe? How, if at all, could sighted and hearing human beings communicate with it?

The first question at least can be partially answered without recourse to mysticism. Magnetic fields do exist, as do electric ones. Certainly some creatures can sense the latter directly (you can yourself, for that matter; bring your hand close to a highly charged object and feel what happens to the fine hairs on your skin). There is some evidence that certain species of birds can detect the earth’s magnetic field. Sound is already used in accordance with its limitations, as is scent. A gravity-sense other than the one we now use for orientation would probably not be discriminating enough, though I could certainly be wrong (read up on lunar mascons if you don’t see what I mean by lack of discrimination).

It is a little hard to envision what could be detected by a magnetic sense, and how its possessor would imagine the universe. Most substances on this planet have practically no effect on a magnetic field, and this is what makes me a little doubtful about the birds mentioned above. I can see the use of such a sense in navigation for a migratory species, but I have trouble thinking through its evolutionary development. Perhaps on a planet with widely distributed ferromagnetic material, the location of which is of life-and-death importance to the life forms, it would happen; maybe our Regulus IV character who can dissolve iron needs it for biochemical reasons.

The important point, from which we may have been wandering a trifle, is not whether I can envision such a situation in detail, but whether the author of the story can do so, and thereby avoid having to invent ad hoc a goose which lays golden eggs. If the life form in question has hearing but no sight, all right; but it should not be able to thread a needle with the aid of sonic perception. Sound waves short enough to have that kind of resolving power would demand a good deal of energy to produce, would have very poor range in air, and would incidentally be decidedly dangerous to human explorers. Of course, a story could be built on the unfortunate consequences of the rnen who were mowed down by what they thought must be a death ray, when the welcoming committee was merely trying to take a good look…

Sound does have the advantage of being able to diffract around obstacles, so that straight-line connection is not needed; light (that is, light visible to human beings) is of such short wavelength that diffraction efiects are minor. This means that the precise direction of origin of a sound ray cannot be well determined, while a good eye can measure light’s direction to a small fraction of a degree. On Earth, we both eat and keep this particular piece of cake, since we have evolved both sight and hearing.

Scent seems to have all the disadvantages and none of the advantages, as a long-range sense. However, under special circumstances even a modified nose may fill the need. In a story of my own some years ago (“Uncommon Sense,” Astounding Science Fiction, September 1945), I assumed an airless planet, so that molecules could ditfuse in nearly straight lines. The local sense organs were basically pinhole cameras, with the retinal mosaic formed of olfactory cells. Since the beings in question were not intelligent, the question of what sort of universe they believed in did not arise.

Granting the intelligence, it would have been—would still be, indeed—interesting to work out their cosmology. Naturally, the first few hours are spent wondering whether and how they could fill the intellectual gaps imposed by their lack of sight and hearing. Then, of course, the intelligent speculator starts wondering what essential details are missing from our concept of the universe, because of our lack of the sense of (you name it). This, for what my opinion is worth, is one of the best philosophical excuses for the practice of science fiction—if an excuse is needed. The molecule-seers presumably lack all astronomical data; what are we missing? This question, I hope I needn’t add, is not an excuse to go off on a mystical kick, though it is one which the mystics are quite reasonably fond of asking (and then answering with their own version of Truth). The human species has, as a matter of fact, done a rather impressive job of overcoming its sensory limitations, though I see no way of ever being sure when the job is done.

Philosophy aside, there are many more details of shape to be considered for nonhuman beings. Many of the pertinent factors have been pointed out by other writers, such as L. Sprague deCamp (“Design for Life,” Astounding Science Fiction, May-June, 1939). DeCamp reached the conclusion that an intelligent life form would have to wind up not grossly different in structure from a human being—carrying its sense organs high and close to the brain, having a limited number of limbs with a minimum number of these specialized for locomotion and the others for manipulation, having a rigid skeleton, and being somewhere between an Irish terrier and a grizzly bear in size. The lower size limits was set by the number of cells needed for a good brain, and the upper one by the bulk of body which could be handled by a brain without overspecialization. Sprague admitted both his estimates to be guesses, but I have seen no more convincing ones since. Whenever I have departed greatly from his strictures in my own stories, I have always felt the moral need to supply an excuse, at least to myself.

The need for an internal skeleton stems largely from the nature of muscle tissue, which can exert force only by contracting and is therefore much more effective with a good lever system to work with. I belittle neither the intelligence nor the strength of the octopus; but in spite of Victor Hugo and most other writers of undersea adventure, the creature’s boneless tentacles are not all that effective as handling organs. I don’t mean that the octopus and his kin are helpless hunks of meat; but if I had my choice of animals I was required to duel to the death, I would pick one of this tribe rather than one of their bonier rivals, the barracuda or the moray eel, even though neither of the latter have any prehensile organs but their jaws. (If any experienced scuba divers wish to dispute this matter of taste, go right ahead. I admit that so far, thank goodness, I am working from theory on this specific matter.)

This leads to a point which should be raised in any science fiction essay. I have made a number of quite definite statements in the preceding pages, and will make several more before finishing this chapter. Anyone with the slightest trace of intelligent critical power can find a way around most of these dicta by setting up appropriate situations. I wouldn’t dream of objecting; most of my own stories have developed from attempts to work out situations in which someone who has laid down the law within my hearing would be wrong. The Hunter in Needle was a deliberate attempt to get around Sprague’s minimum-size rule. Mission of Gravity complicated the size and speed issue by variable gravity.

And so on. If no one has the urge, imagination, and knowledge to kick specific holes in the things I say here, my favorite form of relaxation is in danger of going out with a whimper. If someone takes exception to the statement that muscles can only pull, by all means do something about it. We know a good deal about Earthly muscle chemistry these days; maybe a pushing cell could be worked out. I suspect it would need a very strong cell wall, but why not? Have fun with the idea. If you can make it plausible, you will have destroyed at a stroke many of the currently plausible engineering limitations to the shapes and power of animals. I could list examples for the rest of my available pages, but you should have more fun doing it yourself.

There is a natural temptation to make one’s artificial organisms as weird as possible in looks and behavior. Most authors seem to have learned that it is extremely hard to invent anything stranger than some of the life forms already on our planet, and many writers as a result have taken to using either these creatures as they are, or modifying them in size and habit, or mixing them together. The last, in particular, is not a new trick; the sphinx and hippogriff have been with us for some time.

With our present knowledge, though, we have to be careful about the changes and mixtures we make. Pegasus, for example, will have to remain mythological. Even if we could persuade a horse to grow wings (feathered or not), Earthly muscle tissue simply won’t fly a horse (assuming, of course, that the muscle is going along for the ride). Also, the horse would have to extract a great deal more energy than it does from its hay diet to power the flight muscles even if it could find room for them in an equine anatomy.

Actually, the realization that body engineering and life-style are closely connected is far from new. There is a story about Baron Cuvier, a naturalist of the late eighteenth and early nineteenth centuries. It seems that one night his students decided to play a practical joke, and one of them dressed up in a conglomeration of animal skins, including that of a deer. The disguised youth then crept into the baron’s bedroom and aroused him by growling, “Cuvier, wake up! I am going to eat you!”

The baron is supposed to have opened his eyes, looked over his visitor briefly, closed his eyes again and rolled over muttering, “Impossible! You have horns and hooves.” A large body of information, it would seem, tends to produce opinions in its possessor’s mind, if not always correct ones.

The trick of magnifying a normal creature to menacing size is all too common. The giant amoeba is a familar example; monster insects (or whole populations of them) even more so. It might pay an author with this particular urge to ask himself why we don’t actually have such creatures around. There is likely to be a good reason, and if he doesn’t know it perhaps he should do some research.

In the case of both amoeba and insect, the so-called “square-cube” law is the trouble. Things like strength of muscle and rate of chemical and heat exchange with the environment depend on surface or cross-section area, and change with the square of linear size; Swift's Brobdingnagians would therefore have a hundred times the strength and oxygen intake rate of poor Gulliver. Unfortunately the mass of tissue to be supported and fed goes up with the cube of linear dimension, so the giants would have had a thousand times Gulliver’s weight. It seems unlikely that they could have stood, much less walked (can you support ten times your present weight?). This is why a whale, though an air breather, suffocates if he runs ashore; he lacks the muscular strength to expand his chest cavity against its own weight. An ant magnified to six-foot length would be in even worse trouble, since she doesn’t have a mammal’s supercharger system in the first place, but merely a set of air pipes running through her system. Even if the mad scientist provided his giant ants with oxygen masks, I wouldn’t be afraid of them.

It is only because they are so small, and their weight has decreased even faster than their strength, that insects can perform the “miraculous” feats of carrying dozens of times their own weight or jumping hundreds of times their own length. This would have favored Swift’s Lilliputians, who would have been able to make some remarkable athletic records if judged on a strictly linear scale. That is, unless they had to spend too much time in eating to offset their excessive losses of body heat…

Really small creatures, strong as they may seem, either have structures that don’t seem to mind change in temperature too much (insects, small reptiles), or are extremely well insulated (small birds), or have to eat something like their own weight in food each day (shrew, hummingbird). There seems reason to believe that at least with Earthly biochemistry, the first and last of these weaknesses do not favor intelligence.

A rather similar factor operates against the idea of having a manlike creature get all his energy from sunlight, plant style. This was covered years ago by V. A. Eulach (“Those Impossible Autotrophic Men,” Astounding Science Fiction, October 1956), who pointed out that a man who tries to live like a tree is going to wind up looking much like one. He will have to increase his sunlight-intercepting area without greatly increasing his mass (in other words, grow leaves), cut down his energy demands to what leaves can supply from sunlight’s one-and-a-half-horse-power-per-square-yard (become sessile), and provide himself with mineral nutrients directly from the soil, since he can’t catch food any more (grow roots!).

Of course, we can get around some of this by hypothesizing a hotter, closer sun, with all the attendant complications of higher planet temperature. This is fun to work out, and some of us do it, but remember that a really basic change of this sort affects everything in the ecological pyramid sitting on that particular energy base—in other words, all the life on the planet.

It may look from all this as though a really careful and conscientious science fiction writer has to be a junior edition of the Almighty. Things are not really this bad. I mentioned one way out a few pages ago in admitting there is a limit to the detail really needed. The limit is set not wholly by time, but by the fact that too much detail results in a Ph.D. thesis—perhaps a fascinating one to some people, but still a thesis rather than a story. I must admit that some of us do have this failing, which has to be sharply controlled by editors.

Perhaps the most nearly happy-medium advice that can be given is this:

Work out your world and its creatures as long as it remains fun; then Write your story, making use of any of the details you have worked out which help the story. Write off the rest of the development work as something which built your own background picture—the stage setting, if you like—whose presence in your mind will tend to save you from the more jarring inconsistencies (I use this word, very carefully, rather than errors).

Remember, though, that among your readers there will be some who enjoy carrying your work farther than you did. They will find inconsistencies which you missed; depend on it. Part of human nature is the urge to let the world know how right you were, so you can expect to hear from these people either directly or through fanzine pages. Don’t let it Worry you.

Even if he is right and you are wrong, he has demonstrated unequivocally that you succeeded as a storyteller. You gave your audience a good time.


Building Blocks

Wikipedia has a nice article on Hypothetical types of biochemistry

In a science essay "Not As We Know It", Isaac Asimov notes that life on Terra is based on proteins dissolved in water solvent. He points out some other possibilities. Note that the "temperature" column has the information needed to set the borders of a solar system's circumstellar habitable zone for that particular biochemistry. Temperatures assume the planet has about 1 atmosphere worth of pressure.

Macromolecule in
at 1 Atm
Fluorosilicones in Fluorosilicones 400°? to
500°? C
Silanes (chains of silicon atoms) are too unstable. Silicones (chains alternating silicon and oxygen atoms) are more suitable for making "silicon life" protein analogues.

James Cambias notes that such life will consume carbon dioxide (and other carbon compounds) out of the air, combining it with silicon to create complex silicone compounds. Oxygen will be released but that will immediately combine with silicon to make silicon dioxide sand. The atmosphere will become depeleted in carbon dioxide. This might cool the planet off enough that fluorocarbon-sulfur life will take over the planet.
Fluorocarbons in Molten Sulfur113° to
445° C
Earth proteins are too unstable at liquid sulfur temperatures. They can be stabilized by substituting fluorine atoms for hydrogen atoms, resulting in complex fluorocarbons.

James Cambias notes that such life forms will probably evolve in an atmosphere poor in oxygen but rich in fluorine. However, such life will create atmospheres with oxygen as they release oxygen from carbon dioxide+sulfur dioxide as their metabolism creates complex fluorocarbon molecules. There actually might be enough oxygen in the atmosphere for humans to breath (but the temperature would kill them).
Proteins in Water0° to
100° C
Because water is hydrogenated oxygen, the proteins will have to have more oxygen than nitrogen in their make up. This is "life as we know it." Pretty much all life on Terra falls under this catagory.

James Cambias notes that such life will consume carbon dioxide out of the atmosphere and release oxygen, thus converting the planet's primordial atmosphere into a biologic oxygen containing atmosphere.
Proteins in Liquid Ammonia-77.7° C to
-33.4° C
Because ammonia is hydrogenated nitrogen, the proteins will have more nitrogen than oxygen in their make up. Earth proteins are too stable at liquid ammonia temperatures, ammonia life proteins will have to be more unstable than their Earth analogues.

James Cambias notes that such life forms will probably require a planet with a methane-ammonia atmosphere. As with protein-water life, it will consume carbon dioxide and produce oxygen. However, the oxygen will react with methane to produce carbon dioxide and water. The water will immediately freeze out of the atmosphere, the carbon dioxide will be consumed. Thus the atmosphere will gradually lose all its methane and become much lower in pressure.
Lipids in Liquid Methane-183.6° C to
-161.6° C
Polar liquids will not dissolve non-polar substances and vice versa (oil and water don't mix). Proteins are polar, so they won't dissolve in liquid methane. Complex protein-like polylipids will have to be used instead.

James Cambias notes that such life forms will probably require a planet with a methane-hydrogen atmosphere. As with protein-water life, it will consume carbon dioxide and produce oxygen. However, the oxygen will react with methane to produce carbon dioxide and water while the oxygen will react with hydrogen to produce more water. The water will immediately freeze out of the atmosphere, the carbon dioxide will be consumed. Thus the atmosphere will gradually lose all its methane and hydrogen thus becoming much lower in pressure.
Lipids in Liquid Hydrogen-253° C to
-240° C
Liquid hydrogen is also non-polar, so polylipids will be needed.

James Cambias notes that the temperature will be much higher in the immense pressures of a gas giant world.

Life on Terra is based on Carbon, since carbon can join with not one, not two, not even three, but a whopping four other atoms. This allows the construction of complex molecules like proteins and DNA, a requirement for living creatures. The only other element that can do this is Silicon.

Other chemical elements that are not impossible as the basis for alien life forms include ammonia, boron, nitrogen, and phosphorus. There are even more extreme possibilities.

There are several possibilities for the composition of alien blood.

An example of electronic life is the superconducting mentality in Sir Arthur C. Clarke's "Crusade".

One of the odder aliens is the Qax from Stephen Baxter's Timelike Infinity. Their "bodies" are organized clusters of millions of tiny whirlpools in still ponds. Another odd one was the Monolith Monsters. They were not invading aliens so much as an extraterrestrial chemical reaction. Instant monster: just add water.


      So we must strike beyond physiology and reach into chemistry, saying that all life is made up of a directing set of nucleic acid molecules which controls chemical reactions through the agency of proteins working in a watery medium.
      There is more, almost infinitely more, to the details of life, but I am trying to strip it to a basic minimum. For life-as-we-know-it, water is the indispensable background against which the drama is played out, and nucleic acids and proteins are the featured players.
      Hence any scientist, in evaluating the life possibilities on any particular world, instantly dismisses said world if it lacks water; or if it possesses water outside the liquid range, in the form of ice only or of steam only.
      (You might wonder, by the way, why I don't include oxygen as a basic essential. I don't because it isn't. To be sure, it is the substance most characteristically involved in the mechanics by which most life forms evolve energy, but it is not invariably involved. There are tissues in our body that can live temporarily in the absence of molecular oxygen, and there are microorganisms that can live indefinitely in the absence of oxygen. Life on earth almost certainly developed in an oxygen-free atmosphere, and even today there are microorganisms that can live only in the absence of oxygen. No known life form on earth, however, can live in the complete absence of water, or fails to contain both protein and nucleic acid.)
      In order to discuss life-not-as-we-know-it, let's change either the background or the feature players. Background first!

      Water is an amazing substance with a whole set of unusual properties which are ideal for life-as-we-know-it. So well fitted for life is it, in fact, that some people have seen in the nature of water a sure sign of Divine providence. This, however, is a false argument, since life has evolved to fit the watery medium in which it developed. Life fits water, rather than the reverse.
      Can we imagine life evolving to fit some other liquid, then, one perhaps not too different from water? The obvious candidate is ammonia.
      Ammonia is very like water in almost all ways. Whereas the water molecule is made up of an oxygen atom and two hydrogen atoms (H2O) for an atomic weight of 18, the ammonia molecule is made up of a nitrogen atom and three hydrogen atoms (NH3) for an atomic weight of 17. Liquid ammonia has almost as high a heat of evaporation, almost as high a versatility as a solvent, almost as high a tendency to liberate a hydrogen ion.
      In fact, chemists have studied reactions proceeding in liquid ammonia and have found them to be quite analogous to those proceeding in water, so that an "Ammonia chemistry" has been worked out in considerable detail.
      Ammonia as a background to life is therefore quite conceivable — but not on earth. The temperatures on earth are such that ammonia exists as a gas. Its boiling point at atmospheric pressure is -33.4° C. (-28° F.) and its freezing point is -77.7° C. (-108° F.).
      But other planets?
      In 1931, the spectroscope revealed that the atmosphere of Jupiter, and, to a lesser extent, of Saturn, was loaded with ammonia. The notion arose at once of Jupiter being covered by huge ammonia oceans.
      To be sure, Jupiter may have a temperature not higher than -100° C. (-148° F.), so that you might suppose the mass of ammonia upon it to exist as a solid, with atmospheric vapor in equilibrium. Too bad. If Jupiter were closer to the sun ...
      But wait! The boiling point I have given for ammonia is at atmospheric pressure — earth's atmosphere. At higher pressures, the boiling point would rise, and if Jupiter's atmosphere is dense enough and deep enough, ammonia oceans might be possible after all.
      An objection that might, however, be raised against the whole concept of an ammonia background for life, rests on the fact that living organisms are made up of unstable compounds that react quickly, subtly and variously. The proteins that are so characteristic of life-as-we-know-it must consequently be on the edge of instability. A slight rise in temperature and they break down.
      A drop in temperature, on the other hand, might make protein molecules too stable. At temperatures near the freezing point of water, many forms of non-warm-blooded life become sluggish indeed. In an ammonia environment with temperatures that are a hundred or so Centigrade degrees lower than the freezing point of water, would not chemical reactions become too slow to support life?
      The answer is twofold. In the first place, why is "slow" to be considered "too slow?" Why might there not be forms of life that live at slow motion compared to ourselves? Plants do.
      A second and less trivial answer is that the protein structure of developing life adapted itself to the temperature by which it was surrounded. Had it adapted itself over the space of a billion years to liquid ammonia temperatures, protein structures might have been evolved that would be far too unstable to exist for more than a few minutes at liquid water temperatures, but are just stable enough to exist conveniently at liquid ammonia temperatures. These new forms would be just stable enough and unstable enough at low temperatures to support fast-moving forms of life.
      Nor need we be concerned over the fact that we can't imagine what those structures might be. Suppose we were creatures who lived constantly at a temperature of a dull red heat (naturally with a chemistry fundamentally different from that we now have). Could we under those circumstances know anything about earth-type proteins? Could we refrigerate vessels to a mere 25° C., form proteins and study them? Would we ever dream of doing so, unless we first discovered life forms utilizing them?

      Anything else besides ammonia now?
      Well, the truly common elements of the universe are hydrogen, helium, carbon, nitrogen, oxygen and neon. We eliminate helium and neon because they are completely inert and take part in no reactions. In the presence of a vast preponderance of hydrogen throughout the universe, carbon, nitrogen and oxygen would exist as hydrogenated compounds. In the case of oxygen, that would be water (H2O), and in the case of nitrogen, that would be ammonia (NH3). Both of these have been considered. That leaves carbon, which, when hydrogenated, forms methane (CH4).There is methane in the atmosphere of Jupiter and Saturn, along with ammonia; and, in the still more distant planets of Uranus and Neptune, methane is predominant, as ammonia is frozen out. This is because methane is liquid over a temperature range still lower than that of ammonia. It boils at -161.6° C. (-259° F.) and freezes at -182.6° C. (-297° F.) at atmospheric pressure.
      Could we then consider methane as a possible background to life with the feature players being still more unstable forms of protein? Unfortunately, it's not that simple.
      Ammonia and water are both polar compounds; that is, the electric charges in their molecules are unsymmetrically distributed. The electric charges in the methane molecule are symmetrically distributed, on the other hand, so it is a non-polar compound.
      Now, it so happens that a polar liquid will tend to dissolve polar substances but not nonpolar substances, while a nonpolar liquid will tend to dissolve nonpolar substances but not polar ones.
      Thus water, which is polar, will dissolve salt and sugar, which are also polar, but will not dissolve fats or oils (lumped together as "lipids" by chemists), which are nonpolar. Hence the proverbial expression, "Oil and water do not mix."
      On the other hand, methane, a nonpolar compound, will dissolve lipids but will not dissolve salt or sugar. Proteins and nucleic acids are polar compounds and will not dissolve in methane. In fact, it is difficult to conceive of any structure that would jibe with our notions of what a protein or nucleic acid ought to be that would dissolve in methane.
      If we are to consider methane, then, as a background for life, we must change the feature players.

      To do so, let's take a look at protein and nucleic acid and ask ourselves what it is about them that makes them essential for life.
      Well, for one thing, they are giant molecules, capable of almost infinite variety in structure and therefore potentially possessed of the versatility required as the basis of an almost infinitely varying life.
      Is there no other form of molecule that can be as large and complex as proteins and nucleic acids and that can be nonpolar, hence soluble in methane, as well? The most common nonpolar compounds associated with life are the lipids, so we might ask if it is possible for there to exist lipids of giant molecular size.
      Such giant lipid molecules are not only possible; they actually exist. Brain tissue, in particular, contains giant lipid molecules of complex structure (and of unknown function). There are large "lipoproteins" and "proteolipids" here and there which are made up of both lipid portions and protein portions combined in a single large molecule. Man is but scratching the surface of lipid chemistry; the potentialities of the nonpolar molecule are greater than we have, until recent decades, realized.
      Remember, too, that the biochemical evolution of earth's life has centered about the polar medium of water. Had life developed in a nonpolar medium, such as that of methane, the same evolutionary forces might have endlessly proliferated lipid molecules into complex and delicately unstable forms that might then perform the functions we ordinarily associate with proteins and nucleic acids.
      Working still further down on the temperature scale, we encounter the only common substances with a liquid range at temperatures below that of liquid methane. These are hydrogen, helium, and neon. Again, eliminating helium and neon, we are left with hydrogen, the most common substance of all. (Some astronomers think that Jupiter may be four-fifths hydrogen, with the rest mostly helium — in which case good-by ammonia oceans after all.)
      Hydrogen is liquid between temperatures of -253° C. (-423° F.) and -259° C. (-434° F.), and no amount of pressure will raise its boiling point higher than -240° C. (-400° F.). This range is only twenty to thirty Centigrade degrees over absolute zero, so that hydrogen forms a conceivable background for the coldest level of life. Hydrogen is nonpolar, and again it would be some sort of lipid that would represent the featured player.

      So far the entire discussion has turned on planets colder than the earth. What about planets warmer?
      To begin with, we must recognize that there is a sharp chemical division among planets. Three types exist in the solar system and presumably in the universe as a whole.
      On cold planets, molecular movements are slow, and even hydrogen and helium (the lightest and therefore the nimblest of all substances) are slow-moving enough to be retained by a planet in the process of formation. Since hydrogen and helium together make up almost all of matter; this means that a large planet would be formed. Jupiter, Saturn, Uranus and Neptune are the examples familiar to us.
      On warmer planets, hydrogen and helium move quickly enough to escape. The more complex atoms, mere impurities in the overriding ocean of hydrogen and helium, are sufficient to form only small planets. The chief hydrogenated compound left behind is water, which is the highest-boiling compound of the methane-ammonia-water trio and which, besides, is most apt to form tight complexes with the silicates making up the solid crust of the planet.
      Worlds like Mars, earth, and Venus result. Here, ammonia and methane forms of life are impossible. Firstly, the temperatures are high enough to keep those compounds gaseous. Secondly, even if such planets went through a super-ice-age, long aeons after formation, in which temperatures dropped low enough to liquefy ammonia or methane, that would not help. There would be no ammonia or methane in quantities sufficient to support a world-girdling life form.
      Imagine, next a world still warmer than our medium trio: a world hot enough to lose even water. The familiar example is Mercury. It is a solid body of rock with little, if anything, in the way of hydrogen or hydrogen-containing compounds.
      Does this eliminate any conceivable form of life that we can pin down to existing chemical mechanisms?
      Not necessarily.
      There are nonhydrogenous liquids, with ranges of temperature higher than that of water. The most common of these, on a cosmic scale, has a liquid range from 113° C. (235° F.) to 445° C. (833° F.); this would fit nicely into the temperature of Mercury's sunside.

      But what kind of featured players could be expected against such a background?
      So far all the complex molecular structures we have considered have been ordinary organic molecules; giant molecules, that is, made up chiefly of carbon and hydrogen, with oxygen and nitrogen as major "impurities" and sulfur and phosphorus as minor ones. The carbon and hydrogen alone would make up a nonpolar molecule; the oxygen and nitrogen add the polar qualities.
      In a watery background (oxygen-hydrogen) one would expect the oxygen atoms of tissue components to outnumber the nitrogen atoms, and on earth this is actually so. Against an ammonia background, I imagine nitrogen atoms would heavily outnumber oxygen atoms. The two subspecies of proteins and nucleic acids that result might be differentiated by an O or an N in parentheses, indicating which species of atom was the more numerous.
      The lipids, featured against the methane and hydrogen backgrounds, are poor in both oxygen and nitrogen and are almost entirely carbon and hydrogen, which is why they are nonpolar.
      But in a hot world like Mercury, none of these types of compounds could exist. No organic compound of the types most familiar to us, except for the very simplest, could long survive liquid sulfur temperatures. In fact, earthly proteins could not survive a temperature of 60° C. for more than a few minutes.
      How then to stabilize organic compounds? The first thought might be to substitute some other element for hydrogen, since hydrogen would, in any case, be in extremely short supply on hot worlds.

      So let's consider hydrogen. The hydrogen atom is the smallest of all atoms and it can be squeezed into a molecular structure in places where other atoms will not fit. Any carbon chain, however intricate, can be plastered round and about with small hydrogen atoms to form "hydrocarbons." Any other atom, but one, would be too large.
      And which is the "but one?" Well, an atom with chemical properties resembling those of hydrogen (at least as far as the capacity for taking part in particular molecular combinations is concerned) and one which is almost as small as the hydrogen atom, is that of fluorine. Unfortunately, fluorine is so active that chemists have always found it hard to deal with and have naturally turned to the investigation of tamer atomic species.
      This changed during World War II. It was then necessary to work with uranium hexafluoride, for that was the only method of getting uranium into a compound that could be made gaseous without trouble. Uranium research had to continue (you know why), so fluorine had to be worked with, willy-nilly.
      As a result, a whole group of "fluorocarbons," complex molecules made up of carbon and fluorine rather than carbon and hydrogen, were developed, and the basis laid for a kind of fluoro-organic chemistry.
      To be sure, fluorocarbons are far more inert than the corresponding hydrocarbons (in fact, their peculiar value to industry lies in their inertness) and they do not seem to be in the least adaptable to the flexibility and versatility required by life forms.
      However, the fluorocarbons so far developed are analogous to polyethylene or polystyrene among the hydro-organics. If we were to judge the potentialities of hydro-organics only from polyethylene, I doubt that we would easily conceive of proteins.
      No one has yet, as far as I know, dealt with the problem of fluoroproteins or has even thought of dealing with it — but why not consider it? We can be quite certain that they would not be as active as ordinary proteins at ordinary temperatures. But on a Mercury-type planet, they would be at higher temperatures, and where hydro-organics would be destroyed altogether, fluoro-organcs might well become just active enough to support life, particularly the fluoro-organics that life forms are likely to develop.

      Such fluoro-organic-in-sulfur life depends, of course, on the assumption that on hot planets, fuorine, carbon and sulfur would be present in enough quantities to make reasonably probable the development of life forms by random reaction over the life of a solar system. Each of these elements is moderately common in the universe, so the assumption is not an altogether bad one. But, just to be on the safe side, let's consider possible alternatives.

      Suppose we abandon carbon as the major component of the giant molecules of life. Are there any other elements which have the almost unique property of carbon — that of being able to form long atomic chains and rings — so that giant molecules reflecting life's versatility can exist?
      The atoms that come nearest to carbon in this respect are boron and silicon, boron lying just to the left of carbon on the periodic table (as usually presented) and silicon just beneath it. Of the two, however, boron is a rather rare element. Its participation in random reactions to produce life would be at so slow a rate, because of its low concentration in the planetary crust, that a boron-based life formed within a mere five billion years is of vanishingly small probability.

      That leaves us with silicon, and there, at least, we are on firm ground. Mercury, or any hot planet, may be short on carbon, hydrogen and fluorine, but it must be loaded with silicon and oxygen, for these are the major components of rocks. A hot planet which begins by lacking silicon and oxygen as well, just couldn't exist because there would be nothing left in enough quantity to make up more than a scattering of nickel-iron meteorites.
      Silicon can form compounds analogous to the carbon chains. Hydrogen atoms tied to a silicon chain, rather than to a carbon chain, form the "silanes." Unfortunately, the silanes are less stable than the corresponding hydrocarbons and are even less likely to exist at high temperatures in the complex arrangements required of molecules making up living tissue.
      Yet it remains a fact that silicon does indeed form complex chains in rocks and that those chains can easily withstand temperatures up to white heat. Here, however, we are not dealing with chains composed of silicon atoms only (Si-Si-Si-Si-Si) but of chains of silicon atoms alternating with oxygen atoms (Si-O-Si-O-Si).
      It so happens that each silicon atom can latch on to four oxygen atoms, so you must imagine oxygen atoms attached to each silicon atom above and below, with these oxygen atoms being attached to other silicon atoms also, and so on. The result is a three-dimensional network, and an extremely stable one.
      But once you begin with a silicon-oxygen chain, what if the silicon atom's capacity for hooking on to two additional atoms is filled not by more oxygen atoms but by carbon atoms, with, of course, hydrogen atoms attached? Such hybrid molecules, both silicon- and carbon-based, are the "silicones." These, too, have been developed chiefly during World War II and since, and are remarkable for their great stability and inertness.
      Again, given greater complexity and high temperature, silicones might exhibit the activity and versatility necessary for life. Another possibility: Perhaps silicones may exist in which the carbon groups have fluorine atoms attached, rather than hydrogen atoms. Fluorosilicones would be the logical name for these, though, as far as I know — and I stand very ready to be corrected — none such have yet been studied.
      Might there possibly be silicone or fluorosilicone life forms in which simple forms of this class of compound (which can remain liquid up to high temperatures) might be the background of life and complex forms the principal character?

      There, then, is my list of life chemistries, spanning the temperature range from near red heat down to near absolute zero:
  1. fluorosilicone in fluorosilicone
  2. fluorocarbon in sulfur
  3. *nucleic acid/protein (O) in water
  4. nucleic acid/protein (N) in ammonia
  5. lipid in methane
  6. lipid in hydrogen
Of this half dozen, the third only is life-as-we-know-it. Lest you miss it, I've marked it with an asterisk.
      This, of course, does not exhaust the imagination, for science-fiction writers have postulated metal beings living on nuclear energy, vaporous beings living in gases, energy beings living in stars, mental beings living in space, indescribable beings living in hyperspace, and so on.
      It does, however, seem to include the most likely forms that life can take as a purely chemical phenomenon based on the common atoms of the universe.

From NOT AS WE KNOW IT by Isaac Asimov (1961)

In parallel, I am trying to push research frontiers on biosignature gases. Those are potentially detectable gases that can be created by life and could accumulate in a planet’s atmosphere. My team decided to evaluate all the molecules that are in gas form at Earth’s surface conditions and are made from the six main life-related molecules: carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. From the list of 14 000 possible gases, about a quarter of them are made by life on Earth.

Beyond this factoid, we found something fascinating. We are starting to work through identifying the molecular fragments that life avoids. For example, there are almost no nitrogen–sulfur bonds in life’s products, despite the commonality of both atoms in life’s products. It turns out that most N–S bonds are very reactive in the presence of an S–H bond (hydrogen-sulfur), and S–H bond–containing compounds are a key for life. It appears that life could have a metabolism based on S–H or on N–S bonds, but the two are incompatible. If we were to encounter life on another planet that for some reason relied on N–S bonds, we might actually dissolve each other. We would be poison to each other. So, in going through all the molecular fragments in gases, liquids, or solids rarely produced by life, we are hoping that it will help us understand something about the origin and evolution of life.


(ed note: The tiny group of human interstellar colonies contact an alien race called the Qax. Shortly afterward the Qax conquered humanity and implemented the Qax Occupation. Jasoft Parz is the main human Quisling under the Qax governor. The Spline are aliens that genetically engineered themselves to be living starships. They rent themselves out to other species as the finest starships in space. Spline ship-individuals are huge, a couple kilometers in diameter.)

           Like everybody else Parz had never actually seen a Qax. He suspected that they were physically extensive—otherwise, why use Spline freighters to travel?—but, in any event, it was not their physical form but their minds, their motivation, that was so fascinating. He'd become convinced that it was only by knowing the enemy—by seeing the universe through the consciousness of the Qax—that men could hope to throw off their heavy yoke of Occupation.
     He had come to suspect, for instance, that comparatively few individuals comprised the Qax race—perhaps no more than thousands. Certainly nothing like the billions that had once totaled humanity, in the years before the development of AS technology. And he was sure that there were only three or four Qax individuals assigned to the supervision of Earth, orbiting in the warm bellies of their Spline freighters.

     This hypothesis had many corollaries, of course.
     The Qax were immortal, probably—certainly there was evidence that the same Governor had ruled Earth from the beginning of the Occupation. And with such a small and static population, and with all the time in the world, each Qax would surely come to know the rest of its species intimately.
     Perhaps too well.
     Parz imagined rivalries building over centuries. There would be scheming, maneuvering, endless politicking... and trading. With such a small and intimate population surely no form of formal policing could operate. How to build consensus behind any laws? How to construct laws that would not be seen to discriminate against individuals?

     ...But there were natural laws that governed any society. Parz, drifting into a contemplative doze, nodded to himself. It was logical. The Qax must work like so many independent corporations, in pure competition; they would swim in a sea of perfect information about each other's activities and intentions, kept in some semblance of order only by the operation of the laws of economics. Yes, the theory felt right to Parz. The Qax were natural traders. They had to be. And trading relationships would be their natural mode of approaching other species, once they started spreading beyond their own planet.
     Unless, as in the case of humanity, other opportunities, too soft and welcoming, beckoned...

     Parz didn't believe—as many commentators maintained—that the Qax were an innately militaristic species. With such a small number of individuals they could never have evolved a philosophy of warfare; never could they have viewed soldiers (of their own race) as expendable cannon fodder, as a renewable resource to be husbanded or expended to suit the needs of a conflict. The murder of a Qax must be a crime of unimaginable horror.
     No, the Qax weren't warlike. They had defeated humanity and occupied the Earth merely because it had been so easy.

(ed note: Parz is summoned into the interior of the Spline spacecraft containing the Qax governor of Earth)

     The flitter passed through miles, it seemed, of unlit, fleshy passages; vessels bulging with some blood-analogue pulsed, red, along the walls. Tiny, fleshy robots—antibody drones, the Governor called them—swirled around the flitter as it traveled. Parz felt claustrophobic, as if those bloodred walls might constrict around him; somehow he had expected this aspect of the Spline to be sanitized away by tiling and bright lights. Surely if this vessel were operated by humans such modifications would be made; no human could stand for long this absurd sensation of being swallowed, of passing along a huge digestive tract.
     At last the flitter emerged from a wrinkled interface into a larger chamber—the belly of the Spline, Parz instantly labeled it. Light globes hovered throughout the interior, revealing the chamber to be perhaps a quarter mile wide; distant, pinkish walls were laced with veins.
     Emerging from the bloody tunnel into this strawberry-pink space was, Parz thought, exactly like being born.

     At the center of the chamber was a globe of some brownish fluid, itself a hundred yards wide. Inside the globe, rendered indistinct by the fluid, Parz could make out a cluster of machines; struts of metal emerged from the machine cluster and were fixed to the Spline's stomach wall, so anchoring the globe. A meniscus of brownish scum surrounded the globe. The fluid seemed to be slowly boiling, so that the meniscus was divided into thousands, or millions, of hexagonal convection cells perhaps a handsbreadth across; Parz, entranced, was reminded of a pan of simmering soup.
     At length he called: "Governor?"
     "I am here."
     The voice from the flitter's translator box, of course, gave no clue to the location of the Governor; Parz found himself scanning the stomach chamber dimly. "Where are you? Are you somewhere in that sphere of fluid?"
     The Qax laughed. "Where am I indeed? Which of us can ask that question with confidence? Yes, Ambassador; but I am not in the fluid, nor am I of the fluid itself."
     "I don't understand."
     "Turbulence, Parz. Can you see the convection cells? There am I, if 'I' am anywhere. Do you understand now?"
     Jasoft, stunned, stared upward.

     The home planet of the Qax was a swamp.
     A sea, much like the primeval ocean of Earth, covered the world from pole to pole. Submerged volcano mouths glowed like coals. The sea boiled: everywhere there was turbulence, convection cells like the ones Parz saw in the globe at the heart of the Spline.

     "Parz, turbulence is an example of the universal self-organization of matter and energy," the Qax said. "In the ocean of my world the energy generated by the temperature difference between the vulcanism and the atmosphere is siphoned off, organized by the actions of turbulence into billions of convection cells.
     "All known life is cellular in nature," the Governor went on. "We have no direct evidence, but we speculate that this must apply even to the Xeelee themselves. But there seems to be no rule about the form such cells can take."
     Parz scratched his head and found himself laughing, but it was a laughter of wonder, like a child's. "You're telling me that those convection cells are the basis of your being?"
     "To travel into space I have been forced to bring a section of the mother ocean with me, in this Spline craft; a small black hole at the center of the Spline sets up a gravity field to maintain the integrity of the globe, and heaters embedded at the core of the fluid simulate the vulcanism of the home sea."
     "Not too convenient," Parz said dryly. "No wonder you need a Spline freighter to travel about in."
     "We are fragile creatures, physically," the Governor said. "We are easily disrupted. There are severe constraints on the maneuverability of this freighter, if my consciousness is to be preserved. And there are comparatively few of us compared to, say, the humans."
     "Yes. There isn't much room, even in a planet-wide sea..."
     "The greatest of us spans miles, Parz. And we are practically immortal; the convection cells can readily be renewed and replaced, without degradation of consciousness... You will understand that this information is not to be made available. Our fragility is a fact that could be exploited."

     This warning sent a chill through Parz's old bones. But his curiosity, drinking in knowledge after years of exclusion, impelled him to ask still more questions. "Governor, how could the Qax ever have got off the surface of their planet and into space? You're surely not capable of handling large engineering projects."
     "But we are nevertheless a technological race. Parz, my awareness is very different from yours. The scales are different: I have sentience right down to the molecular level; if I wish my cells can operate as independent factories, assembling high technology of a miniaturized, biochemical nature. We traded such items among ourselves for millions of years, unaware of the existence of the rest of the universe.
     "Then we were 'discovered'; an alien craft landed in our ocean, and tentative contact was established—"
     "Who was it?"
     The Governor ignored the question. "Our biochemical products had enormous market value, and we were able to build a trading empire—by proxy—spanning light-years. But we must still rely on clients for larger projects—"
     "Clients like humans. Or like the Spline, who cart you around in their bellies."
     "Few of us leave the home world. The risks are too great."

From TIMELIKE INFINITY by Stephen Baxter (1992)

(ed note: I was wondering if such fungi could be used as natural nuclear reactor shielding, but probably not. It could self-repair damage, but would take too long. It also probably is not very efficient at shielding.)

Radiotrophic fungi are fungi which appear to perform radiosynthesis, that is, to use the pigment melanin to convert gamma radiation into chemical energy for growth. This proposed mechanism may be similar to anabolic pathways for the synthesis of reduced organic carbon (e.g., carbohydrates) in phototrophic organisms, which capture photons from visible light with pigments such as chlorophyll whose energy is then used in photolysis of water to generate usable chemical energy (as ATP) in photophosphorylation or photosynthesis. However, whether melanin-containing fungi employ a similar multi-step pathway as photosynthesis, or some chemosynthesis pathways, is unknown.



Radiotrophic fungi were discovered in 1991 growing inside and around the Chernobyl Nuclear Power Plant. Research at the Albert Einstein College of Medicine showed that three melanin-containing fungi—Cladosporium sphaerospermum, Wangiella dermatitidis, and Cryptococcus neoformans—increased in biomass and accumulated acetate faster in an environment in which the radiation level was 500 times higher than in the normal environment. Exposure of C. neoformans cells to these radiation levels rapidly (within 20–40 minutes of exposure) altered the chemical properties of its melanin, and increased melanin-mediated rates of electron transfer (measured as reduction of ferricyanide by NADH) three- to four-fold compared with unexposed cells. Similar effects on melanin electron-transport capability were observed by the authors after exposure to non-ionizing radiation, suggesting that melanotic fungi might also be able to use light or heat radiation for growth.

Comparisons with non-melanized fungi

However, melanization may come at some metabolic cost to the fungal cells: in the absence of radiation, some non-melanized fungi (that had been mutated in the melanin pathway) grew faster than their melanized counterparts. Limited uptake of nutrients due to the melanin molecules in the fungal cell wall or toxic intermediates formed in melanin biosynthesis have been suggested to contribute to this phenomenon. It is consistent with the observation that despite being capable of producing melanin, many fungi do not synthesize melanin constitutively (i.e., all the time), but often only in response to external stimuli or at different stages of their development. The exact biochemical processes in the suggested melanin-based synthesis of organic compounds or other metabolites for fungal growth, including the chemical intermediates (such as native electron donor and acceptor molecules) in the fungal cell and the location and chemical products of this process, are unknown.

See also

From the Wikipedia entry for RADIOTROPHIC FUNGUS

Silicon Life

Life on Terra is based on Carbon, since carbon can join with not one, not two, not even three, but a whopping four other atoms. This allows the construction of complex molecules like proteins and DNA, a requirement for living creatures. The only other element that can do this is Silicon, so the SF writers seized it. They are also fond of harping on the fact that while most carbon-based animals on Terra exhale gaseous carbon dioxide, a poor silicon-based critter would breath out silicon dioxide, i.e.,sand. In "A Martian Odyssey" by Stanley Weinbaum is a silicon life creature that "exhales" bricks of silicon dioxide, which it uses to build a pyramid around itself.

Macromolecule in
at 1 Atm
Fluorosilicones in Fluorosilicones 400°? to
500°? C
Silanes (chains of silicon atoms) are too unstable. Silicones (chains alternating silicon and oxygen atoms) are more suitable for making "silicon life" protein analogues.

James Cambias notes that such life will consume carbon dioxide (and other carbon compounds) out of the air, combining it with silicon to create complex silicone compounds. Oxygen will be released but that will immediately combine with silicon to make silicon dioxide sand. The atmosphere will become depeleted in carbon dioxide. This might cool the planet off enough that fluorocarbon-sulfur life will take over the planet.

      Suppose we abandon carbon as the major component of the giant molecules of life. Are there any other elements which have the almost unique property of carbon — that of being able to form long atomic chains and rings — so that giant molecules reflecting life's versatility can exist?
      The atoms that come nearest to carbon in this respect are boron and silicon, boron lying just to the left of carbon on the periodic table (as usually presented) and silicon just beneath it. Of the two, however, boron is a rather rare element. Its participation in random reactions to produce life would be at so slow a rate, because of its low concentration in the planetary crust, that a boron-based life formed within a mere five billion years is of vanishingly small probability.

      That leaves us with silicon, and there, at least, we are on firm ground. Mercury, or any hot planet, may be short on carbon, hydrogen and fluorine, but it must be loaded with silicon and oxygen, for these are the major components of rocks. A hot planet which begins by lacking silicon and oxygen as well, just couldn't exist because there would be nothing left in enough quantity to make up more than a scattering of nickel-iron meteorites.
      Silicon can form compounds analogous to the carbon chains. Hydrogen atoms tied to a silicon chain, rather than to a carbon chain, form the "silanes." Unfortunately, the silanes are less stable than the corresponding hydrocarbons and are even less likely to exist at high temperatures in the complex arrangements required of molecules making up living tissue.
      Yet it remains a fact that silicon does indeed form complex chains in rocks and that those chains can easily withstand temperatures up to white heat. Here, however, we are not dealing with chains composed of silicon atoms only (Si-Si-Si-Si-Si) but of chains of silicon atoms alternating with oxygen atoms (Si-O-Si-O-Si).
      It so happens that each silicon atom can latch on to four oxygen atoms, so you must imagine oxygen atoms attached to each silicon atom above and below, with these oxygen atoms being attached to other silicon atoms also, and so on. The result is a three-dimensional network, and an extremely stable one.
      But once you begin with a silicon-oxygen chain, what if the silicon atom's capacity for hooking on to two additional atoms is filled not by more oxygen atoms but by carbon atoms, with, of course, hydrogen atoms attached? Such hybrid molecules, both silicon- and carbon-based, are the "silicones." These, too, have been developed chiefly during World War II and since, and are remarkable for their great stability and inertness.
      Again, given greater complexity and high temperature, silicones might exhibit the activity and versatility necessary for life. Another possibility: Perhaps silicones may exist in which the carbon groups have fluorine atoms attached, rather than hydrogen atoms. Fluorosilicones would be the logical name for these, though, as far as I know — and I stand very ready to be corrected — none such have yet been studied.
      Might there possibly be silicone or fluorosilicone life forms in which simple forms of this class of compound (which can remain liquid up to high temperatures) might be the background of life and complex forms the principal character?

From NOT AS WE KNOW IT by Isaac Asimov (1961)

All known life on Earth is built upon carbon and carbon-based compounds. Yet the possibility has been discussed that life elsewhere may have a different chemical foundation – one based on the element silicon.

Early speculation

In 1891, the German astrophysicist Julius Scheiner became perhaps the first person to speculate on the suitability of silicon as a basis for life. This idea was taken up by the British chemist James Emerson Reynolds (1844–1920) who, in 1893, in his opening address to the British Association for the Advancement of Science,1 pointed out that the heat stability of silicon compounds might allow life to exist at very high temperatures (see thermophiles). In an 1894 article,2 drawing on Reynolds's ideas and also those of Robert Ball,3 H. G. Wells wrote:

One is startled towards fantastic imaginings by such a suggestion: visions of silicon-aluminium organisms – why not silicon-aluminium men at once? – wandering through an atmosphere of gaseous sulphur, let us say, by the shores of a sea of liquid iron some thousand degrees or so above the temperature of a blast furnace.

Thirty years later, J. B. S. Haldane suggested that life might be found deep inside a planet based on partly molten silicates, the oxidation of iron perhaps providing it with energy.

Silicon biochemistry?

At first sight, silicon does look like a promising organic alternative to carbon. It is common in the universe and is also a p-block element of group IV, lying directly below carbon in the periodic table of elements, so that much of its basic chemistry is similar. For instance, just as carbon combines with four hydrogen atoms to form methane, CH4, silicon yields silane, SiH4. Silicates are analogs of carbonates, silicon chloroform of chloroform, and so on. Both elements form long chains, or polymers, in which they alternate with oxygen. In the simplest case, carbon-oxygen chains yield polyacetal, a plastic used in synthetic fibers, while from a backbone of alternating atoms of silicon and oxygen come polymeric silicones.

Conceivably, some strange life-forms might be built from silicone-like substances were it not for an apparently fatal flaw in silicon's biological credentials. This is its powerful affinity for oxygen. When carbon is oxidized during the respiratory process of a terrestrial organism (see respiration), it becomes the gas carbon dioxide – a waste material that is easy for a creature to remove from its body. The oxidation of silicon, however, yields a solid because, immediately upon formation, silicon dioxide organizes itself into a lattice in which each silicon atom is surrounded by four oxygens. Disposing of such a substance would pose a major respiratory challenge.

Life-forms must also be able to collect, store, and utilize energy from their environment. In carbon-based biota, the basic energy storage compounds are carbohydrates in which the carbon atoms are linked by single bonds into a chain. A carbohydrate is oxidized to release energy (and the waste products water and carbon dioxide) in a series of controlled steps using enzymes. These enzymes are large, complex molecules (see proteins) which catalyze specific reactions because of their shape and "handedness." A feature of carbon chemistry is that many of its compounds can take right and left forms, and it is this handedness, or chirality, that gives enzymes their ability to recognize and regulate a huge variety of processes in the body. Silicon's failure to give rise to many compounds that display handedness makes it hard to see how it could serve as the basis for the many interconnected chains of reactions needed to support life.

The absence of silicon-based biology, or even silicon-based prebiotic chemicals, is also suggested by astronomical evidence. Wherever astronomers have looked – in meteorites, in comets, in the atmospheres of the giant planets, in the interstellar medium, and in the outer layers of cool stars – they have found molecules of oxidized silicon (silicon dioxide and silicates) but no substances such as silanes or silicones which might be the precursors of a silicon biochemistry.

Even so, it has been pointed out, silicon may have had a part to play in the origin of life on Earth. A curious fact is that terrestrial life-forms utilize exclusively right-handed carbohydrates and left-handed amino acids. One theory to account for this is that the first prebiotic carbon compounds formed in a pool of "primordial soup" on a silica surface having a certain handedness. This handedness of the silicon compound determined the preferred handedness of the carbon compounds now found in terrestrial life. An entirely different possibility is that of artificial life or intelligence with a significant silicon content.

Silicon-based life in science fiction

Notwithstanding the gloomy prognosis from chemists, silicon-based life has flourished in the imaginary worlds of science fiction. In one of its earliest outings, Stanley Weisbaum's A Martian Odyssey, the creature in question is half a million years old and moves once every ten minutes to deposit a brick – Weisbaum's answer to one of the major problems facing siliceous life. As one of the watching scientists observes

Those bricks were its waste matter... We're carbon, and our waste is carbon dioxide, and this thing is silicon, and its waste is silicon dioxide-silica. But silica is a solid, hence the bricks. And it builds itself in, and when it is covered, it moves over to a fresh place to start over.

More recently, a silicon-based life-form, the Horta, is discovered by miners on Janus VI in "Devil in the Dark" (original Star Trek series, episode 26). Every 50,000 years, all the Horta die except for one individual who survives to look after the eggs of the next generation.4


1. Reynolds, J. E. Nature, 48, 477 (1893).

2. Wells, H. G. "Another Basis for Life," Saturday Review, p. 676 (December 22, 1894).

3. Ball, R. S. W. "The Possibility of Life in Other Worlds," Fortnightly Review, 62 (NS 56), 718 (1894).

4. Alison, A. "Possible Forms of Life," Journal of the British Interplanetary Society, 21, 48 (1968)

From SILICON-BASED LIFE by David Darling

I am rather doubtful that the cruder substitutions suggested by various writers, such as that of silicon for carbon, would actually work, though of course I cannot be sure that they wouldn’t. We have the fact that on Earth, with silicon many times more plentiful than carbon, life uses the latter. The explanations which can be advanced for this fact seem to me to be explanations as well of why silicon won’t work in life forms. (To be more specific: silicon atoms are large enough to four-coordinate with oxygen, and hence wind up in hard, crystalline, insoluble macromolecular structures—the usual run of silicate minerals. The smaller carbon atom, able to react with not more than three oxygens at once, was left free to form the water-reactive carbon dioxide gas.) True, some Earthly life such as scouring rushes, basket sponges, and foraminifera use silicon compounds in skeletal parts; but not, except in trace amounts, in active life machinery.


To understand why dwarfs and trolls don't like each other you have to go back a long way.

They get along like chalk and cheese. Very like chalk and cheese, really. One is organic, the other isn't, and also smells a bit cheesy.

Dwarfs make a living by smashing up rocks with valuable minerals in them and the silicon-based lifeform known as trolls are, basically, rocks with valuable minerals in them. In the wild they also spend most of the daylight hours dormant, and that's not a situation a rock containing valuable minerals needs to be in when there are dwarfs around.

And dwarfs hate trolls because, after you've just found an interesting seam of valuable minerals, you don't like rocks that suddenly stand up and tear your arm off because you've just stuck a pick-axe in their ear.

From MEN AT ARMS by Terry Pratchett (1993)

Ain't Gonna Look Like Mr. Spock

But even if you handwave that away and declare that there are lots of different species of aliens, there is plenty of room for imagination. Especially in the alien's anatomy. Just here on Terra, we can find jellyfish, tarantulas, viruses, and giraffes. Face it, if these fellow Earth-creatures don't resemble us, a totally alien race from another planet ain't gonna look like Mr. Spock. Personally if I open an SF novel only to discover yet another cat-like alien I may need a nausea bag (RocketCat clears his throat then gives me his best "I'm Looking At A Hypocrite" look).

There might be creeping jellies, giant crystals, intelligent plants, mobile fungoids, energy creatures, fusion plasma beings dancing in solar coronas, liquid or gaseous life, swarming hive intelligences, superintelligent shades of the colour blue, and natural "electronic" life forms in pools of liquid helium. They might not be made of meat. They might not even be composed of matter as we know it, like the Cheela from Dr. Robert Forward's Dragon's Egg who are made of neutronium and white dwarf star matter.

And don't forget the inflatable aliens from John Brunner's The Crucible of Time. Or the bizarre one from Damon Knight's Stranger Station.

Some extraterrestrial creatures inhabit the depths of space itself. In Sir Arthur C. Clarke's Childhood's End was a creature that lived in deep space among asteroid belts. It resembled a huge eye, about twenty feet in diameter. Its survival depended upon the range and resolving power of its eye. Large creatures include the living O'Neil colonies in John Varley's Gaean trilogy and the living planet from Stanislaw Lem's Solaris. Biggest of all is the intelligent nebula from Fred Hoyle's The Black Cloud. Well, actually Olaf Stapedon's intelligent galaxies in Star Maker are bigger, but let's not get carried away.


"Within range of our sensors, there is no life [...]. At least, no life as we know it."

Spock, Star Trek: The Original Series, "The Devil in the Dark"

These are really alien aliens. They may have:

If the aliens in question have two or more of the above traits, you're usually dealing with a Starfish Alien. However they are still "people" in the sense of having:
  • Some kind of language, not necessarily verbal, we can learn to interpret (or maybe not, but we can at least recognize it as a language).
  • Culture
  • Their own belief systems, however unusual.
  • A mind-set that admits to things like logic and intuition; not necessarily those things by our definitions, but things like them.
  • At least some resemblance to living things with which we are familiar. They eat, sleep, reproduce, etc.; they are clearly organic beings, or else Mechanical Lifeforms.

Sometimes, however, they are too alien and their language, mind-set and culture remain incomprehensible to humans. Often (particularly if the beings can't communicate easily with humans) they will be presumed to be evil by the human protagonists without any actual proof. But in accordance with We Come in Peace — Shoot to Kill, starfish aliens who run across innocent, open-minded humans are themselves known to do beyond-horrible things to them, then excuse themselves later with an explanation that they were only trying to communicate with or greet us in the way they know how. Usually, their language and communication are so different from ours that if there is to be any communication between our species and theirs, it must be done by technological means of translation or them taking on a form humans can interact with.

Given the long, strange history of life on Earth (a given house includes such a bewildering variety of life as humans, houseplants, pets, spiders, molds, bacteria, etc.), it's likely if we ever actually encounter alien life it might fit in this category. Species that evolve naturally would have adapted to solve similar basic problems: obtaining food/necessities, negotiating natural disaster, adapting to new circumstances, avoiding contamination by pathogens and parasites, competing with other species, competing with themselves, and so forth. So we would expect to find at least a few familiar aspects to their psychology as opposed to sheer indecipherable mystery... if they evolved in similar conditions as us.

These are much more common in animation, video games, and literature than they are in live-action media, due to the likelihood of Special Effects Failure. They are typically located towards the "hard" end of the Sci-Fi Hardness Scale, though when their biology becomes sufficiently improbable, they may soften it instead. When a story is told from the point of view of Starfish Aliens, and other decidedly non human creatures, it's Xenofiction.

Super Trope to Octopoid Aliens. The inverse of Human Aliens or Rubber-Forehead Aliens. Aliens that don't look like humans, but still have basically the same body type are Humanoid Aliens, or Intelligent Gerbils, if they're obviously based off a particular Earth animal. Insectoid Aliens effectively split the difference.

Prone to enter Grotesque Gallery. May speak a Starfish Language. See also Bizarre Alien Biology, Starfish Robots, and Our Monsters Are Weird. Compare Eldritch Abomination (both tropes have some overlap). The Trope Namer is H.P. Lovecraft's At the Mountains of Madness, written in 1931, where the Old Ones are described as "starfish aliens."

TV Trope page for list of examples)


The Elder Things (also known as the Old Ones and Elder Ones) are fictional extraterrestrials in the Cthulhu Mythos. The beings first appeared in H. P. Lovecraft's novella, "At the Mountains of Madness" (published in 1936, but written in 1931), and later appeared, although not named, in the short story "The Dreams in the Witch-House" (1933). Additional references to the Elder Things appear in Lovecraft's short story "The Shadow Out of Time" (1936).


Description of a partial headless body:

Six feet end to end, three and five-tenths feet central diameter, tapering to one foot at each end. Like a barrel with five bulging ridges in place of staves. Lateral breakages, as of thinnish stalks, are at equator in middle of these ridges. In furrows between ridges are curious growths – combs or wings that fold up and spread out like fans. . . which gives almost seven-foot wing spread. Arrangement reminds one of certain monsters of primal myth, especially fabled Elder Things in the Necronomicon.
—H.P. Lovecraft, At the Mountains of Madness

In the Mythos canon, the Elder Things were the first extraterrestrial species to come to the Earth, colonizing the planet about one billion years ago. They stood roughly eight feet tall and had the appearance of a huge, oval-shaped barrel with starfish-like appendages at both ends. The top appendage was a head adorned with five eyes, five eating tubes, and a set of cilia for "seeing" without light. The bottom appendage was five-limbed and was used for walking and other forms of locomotion. The beings also had five leathery, fan-like retractable wings and five sets of branching tentacles that sprouted from their torsos. Both their tentacles and the slits housing their folded wings were spaced at regular intervals about their bodies.

Lovecraft described the Elder Things as vegetable-like or echinoderm-like in shape, having radial symmetry instead of the bilateral symmetry of bipeds. They also differed in that they had a five-lobed brain. The Elder Things exhibited vegetable as well as animal characteristics, and in terms of reproduction, multiplied using spores, although they discouraged increasing their numbers except when colonizing new regions. Though they could make use of both organic and inorganic substances, the Elder Things were carnivorous by preference. They were also amphibious.

The bodies of the Elder Things were incredibly tough, capable of withstanding the pressures of the deepest ocean. Few died except by accident or violence. The beings were also capable of hibernating for vast epochs of time. Nonetheless, unlike many other beings of the Mythos, the Elder Things were made of normal, terrestrial matter.

From the Wikipedia entry for ELDER THING

     Starfish Aliens: Most of them.

     Digisapiences, of course, have no bodies at all.
     The galari are sophont crystal-virus hybrids with inbuilt techlepathy and mechanical psychokinesis.
     The codramaju are pseudo-fungoids which can merge, exchange, and separate bodies and minds at will.
     The kaeth are vaguely draconic pseudosaurians with a metal-rich biology.
     The hydrogen-breathing sssc!haaaouú are fragile collections of membranes that dwell in the upper layers of gas giants.
     The myneni are crystal-based carbohydrosilicate amoeboids with built-in chemosynthetic talents.
     The mezuar are a network of collectively sophont purplish-blue trees. (Yes, as sessile as that implies, although the selyéva are green-blue plantimals – non-sessile photosynthetics – who probably most closely resemble walking broccoli.)
     The esseli have engineered themselves into brains with manipulating tentacles and customized personal auxiliary organs, and don’t even remember what they used to look like. (And the link!n-Rechesh are heading that way.)
     The qucequql are ammonia-metabolising octopi from a world of nitrogenous oceans.
     The múrast would be simple multiheaded snakes, except that they breathe methane, live in oceans of hydrocarbons, and their primary body structures are constructed of ice.
     The ulakha are metal-plated, fast-moving lizardoids who think Venerian conditions are just about right for a planet.
     The linobir resemble furless, leathery-skinned, hexapedal, hermaphrodite bears.
     The shan kari resemble larger versions of Terran mustelids fairly closely, actually, except they prefer to breathe warm methane.
     The mirilasté are legged-serpents with skin we would recognize as essentially plastic, who breathe the most astonishingly noxious fluorine-hydrocarbon soup.
     The ktelaki are furry arachnids with trilateral symmetry and multi-branched legs.
     The seb!nt!at are star-dwelling creatures of plasma and electromagnetic force.
     The celsesh are quadrilaterally-symmetric with a fused-barrel body plan, and sensory organs on stalks in lieu of a head.
     The embatil are worm/tentacle creatures whose life cycle begins with individuals, but which merge into single creatures as they mature – while transforming a ganglionic into a collegiate intelligence.
     The tennoa are chlorine-breathing radial-crabs blessed/cursed with obligate utilitarianism…

     And that’s all before we get to uplifts, neogens, and exotic neomorphic bioshells.


The horror Third WatchMaster found while inspecting passenger compartments was on the manifest. He had been warned by Timmerbach that Glorious Spent carried two aliens who had boarded on the Atlantean Rim. But…

It (a Godspeaker) looked like a group-grope involving giant hydras and starfish atop a heap of exposed intestines. It was some sort of colonial, symbiotic intelligence. It was a methane breather, which explained why it had not turned out for the passenger muster.

It was revolting.

What the hell excuse was there for letting something that hideous run loose? What was Canon coming to?

The Godspeakers had plenty of warning, though WarAvocat used Hellspinners liberally to burrow a channel so he could reach his objective more quickly. He sent a rider force ahead to strike at two incomplete habitats Seeker feared would flee before they could be destroyed.

Strate told Klass, “Tell him to concentrate on tracking those things.” Minutes after VII Gemina’s breakaway Seeker had announced that each habitat contained a “brood mass,” a mindless superGodspeaker colony serving a reproductive function resembling that of a queen ant and the data storage function of a Starbase Core—though the brood mass could not manipulate that data itself.

“It’s a repository for genes and knowledge,” Klass said. “Without one there could be no more Godspeakers.”

“Why hasn’t he mentioned it before? He’s been holding out.”

“We destroyed the original when we hit their homeworld. He says he didn’t think they could put another one together. They’ve never had two at once, ever.”

WarAvocat knew little about the biology of the methane breathers. He did not care. They were the enemy. Their biology signified only when it could be used against them.

From THE DRAGON NEVER SLEEPS by Glen Cook (1988)

Nowhere in space will we rest our eyes upon the familiar shapes of trees and plants, or any of the animals that share our world. Whatsoever life we meet will be as strange and alien as the nightmare creatures of the ocean abyss, or of the insect empire whose horrors are normally hidden from us by their microscopic scale.

Sir Arthur C. Clarke, 1962
      This guide is meant as an aide for the prospective science fiction writer, game designer or world-builder wishing to incorporate extraterrestrial elements, in order to improve quality and rationality of the created works. It is not so much a “How To”, which would broach multiple sciences and require a profound understanding of each of these, but a “Before You Go On”, things to consider, wrinkles that need ironing out rather than a methodology. Issues that I bring up here do not necessarily make a choice impossible – you must simply figure out a way around them.

     Herein I will be dealing with sapient species, intelligent beings, if you will, since this is where artists’ and writers’ imaginations most often fall short. Here I must distinguish between sentience and sapience – sentient species are aware of their surroundings (which is to say, just about anything more complex than a jellyfish qualifies, even ants), whereas sapient species are capable of reason (humans are the only known organisms that are indisputably sapient). I will do my best to assume a purely physical, rather than cultural or ideological standpoint: alien culture and psychology I may yet examine in the future.

Before Pursuing a Hominid Design:

     Popular media may have convinced you that the only possible means to sapience is assuming a hominid form, or that it is at least the most likely form for intelligent life. Star Trek’s Klingons are a good example of this: canonically they developed from arthropods and so should resemble something vaguely like lobsters, yet they’re practically indistinguishable from humans (never mind how their lobster ancestor transformed like this). There is a reason for the prevalence of hominid aliens, but it’s not this: rather, artists do it spare themselves the effort of having to develop infrastructure capable of serving inhuman physiology – using our couches, toilets, armor and weapons would be quite awkward for Mass Effect’s elephantine Elcor, but not for the upright Turians – and even amongst those who might be willing to brace this, many think it more likely that readers will empathize with their creations if they appear recognizably human – this is particularly obvious of District 9’s Prawns and Avatar’s N’avi, both of which were heavily humanized relative to their original designs for this express purpose. Once enough of these came about, newer works simply followed the trend (likely based on such misconceptions). This latter argument has weight to it, but it’s far from absolute – anybody who owns and loves a pet can attest to that (and I daresay some people feel for their pets more than fellow human beings). If this is your reason for sticking to hominid aliens, you should not fear viewer rejection simply because your alien does not fit the established mold: if anything, because the mold is so horrifically prevalent as to become cliché, any attempt to break it becomes novel and unique. You’re more likely to grab attention and attract a reader base by daring to think outside the box, and I’m here to challenge you to do it.

     As for those who are more scientifically oriented, I can assure you that intelligence needn’t be hominid. One look at Earthly fauna confirms it: while many of the smartest species are indeed vaguely human-like primates (which makes sense, in that we evolved from such creatures), there are many that look nothing like us, neither in size nor in shape – elephants, dolphins, parrots, higher canines, corvids (crows, ravens and magpies) and finally cephalopods (squids and octopuses). I doubt that I need to justify the intelligence of the first three, but of the others, I’ll say this. City dogs have learned to use subway trains unattended and have even been observed dividing roles among the pack – one would send out either the smallest and cutest dog to beg bystanders for scraps, or the largest and meanest to scare those passing by into dropping whatever food they might be carrying. Corvids have been observed using sticks as tools and can even put human technology to their advantage: crows will drop nuts too hard to crack onto busy roads for cars to run over them, and some will even make sure that to do this at the pedestrian crossing, where they can come down during a red light to eat said nuts without fear of being run over. Amongst cephalopods, squid can distinguish between visitors and apply lessons taught by their trainers: once taught how to open cubes with differently working locks, they are capable of opening series of these with each inlaid in the other.

     That being said, sapience is not the only prerequisite for developing technology, and even if all of these achieved true sapience, some would find this easier to manage than others: primates, elephants and cephalopods. This is because they have complex manipulators – primates have hands, elephants have trunks, and cephalopods have tentacles – where the others must awkwardly use their mouth and feet. The former could more adroitly use and develop tools, building up on them to conquer their environment if they put their mind to it. Again, Earth proves that the human form (or in this case, the human means) is not the only capable one.

     Moreover, we’re unlikely to see many hominid aliens in the first place. Consider all extant life on Earth: out of all terrestrial vertebrates (that’s some 32000 species), there are only two groups of erect bipeds, humans and penguins: there are other species that can temporarily maintain an erect bipedal stance, but only the aforementioned groups rely on it as their chief form of locomotion. That’s 17 species out of some 32000 (even more if you look at all extinct ones), and even amongst those 17, only one has an adroit manipulator. You might find this a flawed statistical argument, given that we’ve only one sample space, but there’s also a found logical and biological explanation, namely that the human body plan developed due to specific evolutionary conditions. Our primate ancestors were only driven out of the trees by the rapidly drying climate of the Miocene and Pliocene, as newly evolved C4 grasses took over our formerly wooded habitat. The exact reason we became bipedal rather than quadrupedal remains disputed – some hold that it allowed more energy efficient locomotion, others that standing upright presented a greater surface area for cooling and intimidation, others yet that greater height helped us better see over tall grasses – but whatever it may be, this choice kept hands already made adroit from tree-climbing free for other tasks, and we would use them well. With plants richer than grass fewer and farther between came the impetus for better hunting, and by eating more and more energy rich meat instead of tougher plantstuff, less energy needed to be directed to digestion and more could be sent to our growing brains. Each of these was a specific condition, and taking out any one of them might have prevented human evolution, or at least set us down a very different track: the chances of a similar sequence occurring elsewhere are improbable at best. Even if such a sequence did occur, you still won’t get a hominid sapient – not unless your alien had a primate for an ancestor.

     Is this to say that you will not find any other hominids at all? That’s probably untrue – the sheer number of possibly life-bearing planets in the universe allows even this negligible chance to be realized – but our form will always be the exception and never the rule. If you can justify use of such design, preferably in a different manner than just explained, there’s nothing stopping you from implementing it. Just don’t have more than a rare few species be hominid amongst the universe’s sapients. There may be in-universe reasons to explain the contrary – Master of Orion III held that all hominids were engineered by a single precursor species to explain their multitude and similarity, even though they were not nearly as prominent as in other universes, numbering but 3 of the 16 playable races – but for the most part your readers will see this as an attempt to cover lack of creativity, rather than ingenuity.

Critical Points on Designing Your Sapient:

     You may have already deduced these points from the former section, but I will reiterate them here. There are two main things you should have in mind when designing a sapient alien:
  1. A non-sapient “animal” ancestor.
  2. An evolutionary impetus for it to develop sapience.
     The first of these can be a challenge in its own right, as the non-sapient ancestor must have had some role and adaptation to survive in a particular environment, even if this applies no longer, otherwise it would have never come into existence. This is true of humans as well: even before our brains grew to their modern size, on the plains we specialized as endurance predators, chasing prey till they dropped of exhaustion (and as marathon runners demonstrate, we’re still good at it). You must imagine where the pre-sapient resided, and how it was capable of surviving in said environment before gaining sapience. I will not outline all the possibilities therein – your imagination will surely outstrip any attempts of mine to list them – but I will provide a series of guidelines and considerations for envisioning it.

  • Body Plan: it does not serve much purpose to discuss these – the imaginative reader will certainly not be limited by vertebrate-like physiology, or even Earthly physiology. This is for the better, as Earthly biology is not inspirational in this regard – of some forty animal phyla, only two have had major success on land, which is to say there are only two distinct terrestrial body plans – but the less-experienced would do well to study this, particularly non-vertebrate (and even aquatic animal) anatomy, in order to feed their imagination and help them understand the relation of form and function. A complete understanding of your creation’s anatomy is not always necessary, but it is good for determining implications of its various systems – a trachea using life form would not be able to hold its breath, for instance – and you should at least have an idea of how it goes about eating, breathing and reproducing. That being said, some generalizations of form can be made.

    • Speed requires sleek, aerodynamic forms, with landrunners possessing long and muscular legs to cross larger distances with every stride: huge numbers of legs do not preclude speed, but managing it does require that they be specially arranged so as to avoid running into each other.

    • Larger and heavier organisms will opt for columnar legs with few joints (unless they spend most of their time on their bellies or underwater, in which case they have other means of support), while smaller and lighter ones will opt for splayed legs: this is because the former better support weight while the latter can take horizontal forces and moments as might be imposed by wind.

    • Diggers tend towards compact, cylindrical forms so as to best fit through tunnels, and often minimize or lose their limbs.

    • Aerial forms specifically adapt themselves to minimize weight, the less that needs to be carried, and typically require energy-rich diets to manage the heavy upkeep of active flight.

    • Treeclimbers require a means of maintaining grip, which generally implies suction ability or opposable digits, and those that wish to cross from tree to tree without returning to ground will also need good jumping ability or a body part of extensive length to reach across.
  • Skeleton: unless your creature is very small (in which case weight is negligible) or lives in a fluid medium (in which case buoyancy counteracts weight), this is a requirement for it to maintain its shape under the load of its own weight, and indeed against other forces that might be arrayed against it. There are fundamentally three kinds of skeleton: exoskeletons (as in arthropods), where the support structure is external and flesh is contained within, endoskeletons (as in vertebrates), where the support structure is internal and flesh is wrapped around it, and mesoskeletons (as in echidnoderms – starfish, crinoids, sea urchins and sea cucumbers), where flesh is both wrapped around the support structure and contained within it. For mechanical reasons, an exoskeleton of a certain mass will always bear the greatest bending stress and be most resistant to buckling, but the external armor carries a heavy price: the rigid armor dulls external sensation, and though it is difficult to penetrate by clawing or biting, it is extremely sensitive to impact loading and is easily shattered by powerful blows. These might be imaginatively compensated for – arthropods have sensitive hairs to feel through their carapace – but exoskeletons are hence presumed to be more viable for small organisms than large ones, as the former do not move fast or far enough to manage such damaging impacts. Functionally mesoskeletons act much like endoskeletons, albeit the former is somewhat stronger yet with more awkward organ arrangements: these do not provide such armor, but the layers of flesh atop the supports buffer them against impacts.
  • Diet: chances are your sapient is going to be predatory. Herbivorous sapients are not impossible, as elephants prove, but they’re much less likely to occur than others are for two primary reasons: firstly because plants have far lower energy density than meat and are typically harder to digest, requiring that herbivores spend much more time eating and leaving less time for mental pursuits (elephants eat 18 hours a day), and secondly because such lifestyle does not in and of itself provide the same impetus for intelligence, as it’s not required to secure a meal, whereas carnivores need some ability to outwit and catch their prey. Similar arguments all but preclude the existence of autotrophic sapients, ones that can gather energy without needing to eat at all (most likely by photosynthesis or chemosynthesis): they simply could not gather enough energy by such means to support their activity – a single human being requires as much energy as several thousand tons of grass. Omnivores stand the best chance, even better than carnivores, as they have the same impetus to develop sapience, but also have fewer limitations on food sources, and hence can more easily substitute when any run out.
     The technological sapient is under even greater limitations. It must of necessity be social: without regular interactions between individuals, there is no way to transmit information between them, or indeed from generation to generation, and hence no way to accumulate information. You could postulate a species in which the individual inherits information from its parent or acquires it from others biologically, perhaps via genetically encoded memory, but even this would soon be overwhelmed by the increasing efforts required to advance its technology. Only through delegation of effort and resources can continuous achievement be realized: arguably such delegation is the society, or at least its basis. This is not to say that all social species will develop technological capability, but the former is a requirement for the latter: similarly, what is to follow can be applied for non-technological sapients, but cannot be ignored for technological variants.
  • Communication: society and transmission both require a means of communication, preferably one which can address large groups – any complex species can manage this via physical contact, but this only works on an individual basis. Barring more exotic means, your public communication must be vision, smell or sound based, and it should go without saying that your sapient must have the required sense be well developed.

    • Auditory means are already familiar to the reader through human speech, and benefit in that they can transmit information quickly across great distances as well as being difficult to obstruct (particularly infrasound, which can go literally kilometers without much attenuation), but this does not mean that the others are not similarly viable, so long as one takes into account their shortcomings.

    • Visual displays suffer in that they only work in daytime and line of sight, which makes them easily obstructed: indeed, they can only grab another’s attention if said other is already looking in the right direction (which may not be as big a problem for sapients with panoramic or Omnidirectional vision).

    • Olfactory displays carry an inherent delay in communicating across all but the shortest distances, seeing as scent takes significant time to cross them, and may not even be able to reach in all directions depending on the wind (that being said, they could also be fanned deliberately so as to move in only one direction): moreover, smells that can make it across distances will persist and build up as the conversation moves along and others add to it, until they become indistinguishable in the increasingly convoluted mix, which may require careful fanning and designated turns to combat accumulation (though these would take long periods to communicate), or short-lived immediate use smells (though these would be useful only over a small range). Many species might also use a more limited form of olfactory communication via pheromones, by which an individual’s emotional or physical state may be communicated to others.

    Don’t ignore the possibility of multiple types of communication – amongst groups, you want to stand out amidst the crowd, but being conspicuous might not always be desirable (say, while hunting), and entirely novel means not discussed here may come up.
  • Senses: herein are imposed the least obvious constraints. The primary sense need not be vision, but a technological sapient will require at least one shape-determining sense to be well developed – that is, touch, vision or echolocation – in order to make possible the precision required for advanced structures and machines. That is not to say that it must be limited to the senses described here, or even the five human senses: species that spend much time underwater may benefit from electroreception, the ability to sense electrical impulses of fellow organisms conducted in the surrounding fluid, and migratory species may benefit from magnetoreception, the ability to sense magnetic fields and hence utilize their planet’s magnetic field as an internal compass (such species might also be able to sense active electronics, which also produce magnetic fields). However, senses that do not see use fade away, and wane almost to the point of uselessness: in particular deepwater, subterranean and cave-dwelling organisms quickly lose their sight, without light to benefit from it.

    There are also some environments where a sense may not be of much use: sound (and by extension, echolocation) requires a medium to transmit it and so is less useful in a rarefied atmosphere (though not useless, as sound can still be carried through soil and other solids), vision requires a source of illumination to be useful which may be absent or blocked in certain mediums (though this can be overcome in some cases by seeing outside the visible spectrum), smell gives a limited range of perception in an atmosphere saturated with it, touch can discern little in the open air or water (although temperature and pressure senses will still be valuable here), and air and soil don’t conduct electricity well enough for meaningful electroreception.
  • Adroit Manipulators: clearly the aspiring technological sapient will require at least one of these, or the precursor to one. Hands, trunks and tentacles have been brought up, and sufficiently prehensile tails, extensive tongues and flexible lips also qualify; certainly the imaginative reader will not be limited by this. What you should consider is the limitation of each. Wholly muscular structures like trunks, tentacles and tongues lack for rigid components and can hence change their length, stretching and constricting as needed, as well as squeeze through all but the tightest spaces, but are limited in the force they can exert: Earthly muscles can only contract, so structures with this basis can only pull, lacking the ability to exert any significant compressive force and excluding sapients reliant on them from a large number of tasks (particularly hammering, which will have a tremendous implications for their mining, building and construction), while those based on a potentially expanding muscle like the Eponan pentapod would only be able to push, lacking the ability to exert any significant tensile force and similarly excluding sapients from an entirely different set of tasks (particularly pulling ropes, which will also impact their construction). Adding rigid bone-like structures as found in hands and tails gets around the force limitations, as muscles can use these parts as levers both to push and pull, but the structure now has fixed geometry, and some loss in flexibility and range in movement is inevitable.
     For those more dedicated worldbuilders, particularly top-down ones, developing the animal pre-sapient may reflect on the ecology of the world as a whole. Firstly, in creating this creature, you are setting down possible characteristics of an order, class, and even a whole phylum. By stripping away its characteristics to a fundamental few and branching out from there, you may design the other organisms on the planet.
     The impetus is in some ways more complicated. Some scientists insist that sapience requires an evolutionary bottleneck, a constraint that only sapience can escape, and this thinking should be incorporated to some extent in your work: is sapience the only means of meeting the challenges imposed upon the creature? Big brains are costly, and if an easier option presents itself, it will be selected for preferentially. That being said, what we know of the evolution of pre-sapients on Earth suggests it’s not always this complex – cephalopods are thought to have developed their intelligence as a response to losing their shell, and with it their chief defense against predation, and it also serves as a means of hunting more diverse prey, each of which requires unique strategy to take down.

Example Design:

     All these taken together might seem overwhelming, so I’ve provided an example of my own to ease you into the process and demonstrate the contrary.

     Crucial to understanding the sapient is understanding its homeworld, the Super-Earth Meios (pictured here [link]), a terrestrial planet with much higher gravity than the Earth and a surface dominated by ocean, with only the occasional island for relief. One reason for the near landlessness is the soupy atmosphere, which quickly erodes any formations out of existence: volcanic action can outstrip atmospheric destruction for a time, but as soon as the hotspot goes silent, the air will see its works undone.

     Nevertheless, there are occasions where a number of volcanoes form in near proximity and can hence form a considerably larger landmass that can stand a little longer. It was the formation of such a “subcontinent” that allowed the evolution of chiefly terrestrial life, where before the ecology had been primarily aerial and aquatic, and it is from this picture that our pre-sapient emerged.

     It was a ballont, member of a clade of organisms that benefitted from the super-dense atmosphere to achieve lighter-than-air flight, and adaptations that formerly suited it for the air were put to good use on land: where their heavier-than-air steelwing competitors had to contend with moving their gravity-enhanced bulk, the ballonts were already able to counteract their weight via buoyancy, the same mechanism that had enabled their flight, and hence could make do without heavyset legs. In particular, it was an ironbelly ballont (as displayed here [link] ), specialized for chasing steelwings down with powerfully beating tails, using its long tentacles to reach through their exoskeleton for energy-rich flesh underneath, and well-armored on its undersides to keep safe from aquatic threats at low altitude – each of these characteristics would be adapted for its new life on land. So long as it stuck close to the ground, there was no longer any threat coming from underneath it, and so the primary danger came from the sky, causing it to flip orientation so that its shell pointed upwards and its balloons earthwards. Extensions of this would form on the wing-fins and tail, completing its protection, but not solely for this purpose: rather by being semi-rigid as opposed to wholly muscular, these limbs could now push against the ground, allowing them to act as braces against the wind and propel the ballont forward that it may chase down prey with impunity. To this end they took on a sprawling configuration, as they had no need to concern themselves with weight, only inertia (a constant unaffected by gravity). That being said, their ‘feet’ and bottom would remain fleshy, both to feel the earth underneath them as well as to allow better grip and traction.

     The success of this body plan lasted only as long as the subcontinent, and when the volcanoes providing for it puttered out one by one, it was only a matter of time before it began to recede. The terrestrial ecosystem was devastated: with their subsistence rapidly disappearing organisms had to return to the water or air or vanish with the landmass. The pre-sapient could not readily do this: while it had maintained the means of flight in its balloons, in adapting its wing-fins and tail for springing it had given up most of its muscles in favor of fewer but stronger units, and without those it could not regain the flexibility and thrust it needed in the air. As the large organisms it once fed off went away with the subcontinent it had to satisfy itself by diversifying its prey, eating everything it could get, and it is in learning how to hunt such numerous prey items without its former speed or grace that it gained sapience. The final design can be found here: [link].

     Society had already been present in certain ironbellies before they set foot on the subcontinent, when small groups would chase down and corner packs of smaller fliers, but the basis of it lay in the mother-infant connection. Because buoyancy requires significant volume, all ballonts give live birth to one or two well-developed young, that they may be born as large and as well-equipped to fly as possible. However, the ironbelly young is born without a shell, that it may better fit inside the mother, and so it is particularly imperative that she defend it: whenever possible she’ll latch her tentacles to those of her young, making sure it’s always within arms’ (tentacles’) reach, and it is from this tentacle-to-tentacle bond that their tactile personal communication is based, while vocal communication is reserved for gaining attention and addressing groups.

Other Important Misconceptions:

     Chances are your sapient does not exist on its own, but as part of a greater science fiction universe, and now you must now consider its place therein – what it thinks of and how it deals with other such races, and what said others think of it and how they deal with it in turn. Ideally this would require understanding the history, culture and psychology of all involved parties, but even ignoring these in favor of solely physical sciences I can caution against certain pitfalls inspired by popular media:
  • The Single-Biome Planet: barring extraordinary circumstances, few life-bearing planets will fall under this description, and you should not expect your sapient’s homeworld to be one. This is mainly due to two phenomena – the first is variation of temperature with latitude, with areas further away from the equator receiving less sunlight and hence less warmth, and variation of precipitation, brought about by varying temperature, wind direction and topography (with mountains creating rain shadows on their leeward sides) – and is further complicated by the twin effect of atmospheric and oceanic circulation, where fluid currents help to deliver heat across the planet’s surface. You are probably already aware of these, but I’m asking you to apply these lessons: unless your world lacks for ocean or atmosphere, in which case there is nothing to enact the changes of temperature, or these are so prevalent that circulation renders surface conditions all but uniform, your world will have multiple climates.
  • Interspecies Romance: I am not talking about platonic relationships – surely we should be able to enjoy the company of a personable sapient – but sexual ones. They will not be prevalent: for the greater part of our population, nonhominid aliens should elicit no sexual response, any more than do animals, plants or inanimate objects to the general observer, but the existence of paraphillia proves that the human form is not necessary for sexual attraction, and presumably, similar pathologies amongst other sapients will allow some to be attracted to those not of their kind. Not all species will be capable of receptivity – asexual species and some that fertilize externally would have no use for it, and many might only be aroused in designated mating seasons and at no other times – but even amongst those that can, consummating the relationship will be no simple matter. Sexual organs should not be compatible and sexual practice of each species could vary so much between the two as to exclude mutual enjoyment, with some examples possibly posing a danger to one of the partners – many Earthly species have a tendency to devour the male after copulation, and even amongst the comparatively mild mammals and reptiles, quite a few species have spiked penises (including our fellow apes), with the semen of some forming a plug to prevent unequipped males from copulating with claimed females. These might be imaginatively compensated for, but for the most part such relationships will only end in futility.
  • Interspecies Hybrids: it should go without saying that such species will never be capable of bearing progeny with any other, and none of them, not one, will be able to bear children by us. While a number of interspecies hybrids do exist on Earth, these are only between closely related species, typically within the same genus or family, and many are infertile. Alien sapients would have developed independently, likely with their own unique incompatible biochemistry, and a divergent evolutionary history will ensure that even if the former did match, their genes would not: what chances do they have? Unless the species in question share a common ancestor and are separated by only a short evolutionary period, cross-compatibility simply isn’t possible.
  • Interspecies Diet: that is the ability of one race to eat another’s foodstuffs, or indeed any organic matter not from their own world – again, this is unlikely due to divergent biochemistries. It’s not nearly as simple an issue as Mass Effect’s levi versus dextro distinction makes it cut out to be: life forms from different worlds may well be based on the same classes of compounds, yet still find other variants of these expressed by the other to be toxic or indigestible – indeed, all life on Earth is based on proteins, carbohydrates, lipids and nucleic acids, like us, but only a fraction of it is edible. Aliens will find this fraction even smaller, if it exists at all, not even having the benefit of having evolved to eat some of it, though there may be quite a few normally incompatible ‘foods’ that could be processed to yield nutrition. Suffice to say, with few exceptions sapients will not be sharing foodstuff: each will have to produce and bring along its own specific sustenance.
  • Interspecies Intelligibility: chances are remote that each species will be able to simulate all the nuances required in the others’ communication, and there’s a good chance that such nuances may even be beyond one’s perception. This is certainly subjectively true of Earthly languages, with cultures capable of distinguishing phonemes that are synonymous to others, but it’s also objectively true, as we’ve seen in our dealings with the planet’s pre-sapients. On the latter end of the spectrum, elephants and dolphins regularly vocalize with one another, but we only hear the occasional grunt or squeak, in the former case because sound frequency is too low, in the latter case because sound frequency is too high for our ears to pick up. On the former end, apes are certainly capable of perceiving human speech, and with proper training can even comprehend it, but none have yet to vocalize any human words – they simply lack the faculties for it. This may be imaginatively compensated for – a Russian elephant managed to mime human words by manipulating its lip with its trunk – but for the most part it seems sapients will not be picking up each others’ tongues, and where they do, it will be butchered beyond belief. More likely than not, the two will have to agree to a shared language, or rely on translators.

“Two large dark-coloured eyes were regarding me steadfastly. The mass that framed them, the head of the thing, it was rounded, and had, one might say, a face. There was a mouth under the eyes, the lipless brim of which quivered and panted, and dropped saliva. The whole creature heaved and pulsated convulsively. A lank tentacular appendage gripped the edge of the cylinder, another swayed in the air. ... There was something fungoid in the oily brown skin, something in the clumsy deliberation of the tedious movements unspeakably nasty.”
– H.G. Wells, The War of the Worlds (1898)

Pretty disgusting, huh? The classic tales of science fiction are full of Bug-Eyed Monsters (or BEMs as they are affectionately termed by cognoscenti) which invade planets, threaten towns. attack rocket ships, and carry off shapely human females. Hollywood producers apparently are convinced most extraterrestrial (ET) beings fall in one of four zoological categories: (1) Human or humanoid, (2) oversized animals, (3) amorphous blobs and pods, and (4) formless energy beings.

Can’t we do any better than this?

Quite! In fact. anyone with access to a good library can walk in and read all about the biology of one of the most fascinating, richly populated worlds anywhere in the Milky Way: Earth! We inhabit a queer planet with many strange settings and fabulous living creatures, altogether an excellent example of what extraterrestrial life may be all about. To a team of Interstellar Zoologists, researching sentient terrestrial mammals out here in the galactic boondocks, our world is as rare a planetary zoo as any in the Milky Way.

Xenobiologists have formulated a simple rule called the Assumption of Mediocrity, which says, in essence, that Earth should be regarded as “typically exotic.” The unusual solutions devised by evolution on this planet to cope with the problem of survival will find their parallels, though not necessarily their duplicates, among the living species of other worlds. As biologist Allen Broms once remarked, “life elsewhere is likely to consist of odd combinations of familiar bits.”

Strange Life

Life as we know it is based on cells: small, neat packages of living protoplasm containing all of the biological machinery necessary for survival. Human body cells average a few microns in size. (One micron is a millionth of a meter, about a hundredth of the thickness of the page these words are printed on.) The smallest living thing on Earth capable of independent metabolic activity is the PPLO, or “pleuropneumonia-like organism,” which measures 0.1 microns. Microbiologists estimate that the smallest cell that could, in theory, exist would measure about 0.04 microns in diameter. It is amusing to speculate that the alien analogue to a human being, constructed in the same form but using these miniature cells, would weigh a mere 50 milligrams and stand only 5 millimeters tall – hardly the thickness of a pencil. Whether creatures so small could retain a human-level intelligence is anyone’s guess.

Fairly large extraterrestrial lifeforms might well exhibit acellular physiology, or be unicellular. For example, at one stage in their life history, slime molds are tiny one-celled flagellates capable of individual multiplication by simple fission. In the later “plasmodium” stage of development, large clumps of these creatures fuse together and their cell walls dissolve away to produce an amorphous acellular mass of living protoplasm which can grown as large as 25 centimeters or more. Further, the largest known single living cell was the egg of the now-extinct half-ton elephant bird or “roc bird” (Aepyornis maximus). This egg measured about a third of a meter across and weighed 15 kilograms.

The number and kinds of organs in alien creatures may also be highly variable. For example, earthly squids have two different kinds of hearts – one for venous and a separate one for arterial blood – and the common earthworm (Pheretima) has a dozen hearts. Two extinct dinosaur species, Brontosaurus and Diplodocus, had two brains, one in the head and an even larger hunk of neural tissue in the hip region. (The volume of this “sacral enlargement” in Stegosaurus, another fossil animal of grand proportions, was perhaps twenty times larger than the brain in the cranial cavity! And the entire body of an insect is its “lung” – oxygen is carried directly to cells by an intricate network of tracheae or microtubules permeating the entire organism.

Sometimes, organs combine several functions in one – such as the human mouth. ETs need not have the same combinations as we. They may have identical or separate organs for eating, drinking, excreting, breathing, and speaking. The dolphin, for instance. eats through its mouth, breathes through its blowhole, and “speaks” through its “ears.” The land snail’s lung opens into a passageway other than its food canal, and sea cucumbers breathe through their rectums (called “anal respiration”). The cloacae of frogs and many other animals is a single organ which combines excretory and reproduction functions. Brachiopods can only vomit excrement from their “blind intestine” (a kind of alimentary cul-de-sac), and the members of phylum Nematomorpha (long worms) eat solely by direct absorption of nutrients through the skin – for they have no mouths.

How Large?


Gravity and Life

The respected zoologist D’Arcy Wentworth Thompson once speculated about the effects of gravity on evolution. “Were the force of gravity to be doubled,” Thompson declared, “our bipedal form would be a failure, and the majority of terrestrial animals would resemble short-legged saurians, or else serpents. Birds and insects would suffer likewise, though with some compensation in the increased density of the air. On the other hand, if gravity were halved, we should get a lighter, slenderer, more active type, needing less energy, less heat, less heart, less lungs, less blood. Gravity not only controls the actions but also influences the forms of all save the least of organisms.”

It is true that the maximum weight of living species cannot exceed the crushing strength of bony material. But animals are not designed to stand still – if they were, human legs could be a few millimeters thick. Instead they must bear up under the peak pressures and accelerations encountered during normal running, jumping, and other strenuous survival activities. A horse at rest seems greatly overbuilt; on the racetrack where it may pull to a halt in a second or less, near the breaking point of its bones, the design limits are more fully exploited.

Clearly there are other factors at work besides gravitational loading in fixing maximum size – predator/prey relationships, running speeds, food requirements, oxygen levels, ecological constraints, and so forth. Still we can estimate how gravity might influence evolution, based on Earth’s biological history. The largest land creature alive today is the African elephant, weighing an impressive 6600 kilograms. Tyrannosaurus rex, one of the largest land carnivores, was at least 8000 kg. The Baluchitherium, the largest extinct land mammal, was built like a hornless rhinoceros, and carried a bulk of more than 22,000 kg. The largest land animal ever may have been Brachiosaurus, of which some specimens may have weighed 111,000 kg. but we’ll ignore this majestic brute because he probably had to spend lots of time sitting in swamps resting his tired bulk. We may conservatively guess that the heaviest exclusively land-dwelling creature plausible on a 1-gee planet is around 22,000 kg.

How massive will alien animals be? Simulations of model solar systems by Dr. Stephen H. Dole of the RAND Corporation and others suggest that terrestrial rocky worlds with atmospheres suitable for life should have surface gravities between about 0.2 and 2.0 Earth-gees. Now, if gravity doubles, bone stress won’t increase if a creature’s height is halved while other dimensions remain the same. If maximum height is inversely proportional to gravity, then maximum volume (hence mass) goes inversely as gravity cubed. By this measure the heaviest animal on a 2-gee world is about 2800 kg, while on a 0.2-gee planet (like Saturn’s moon Titan) the most massive beast could conceivably reach nearly three million kilograms – though I’d hate to try to keep it fed! So animals like walruses, small elephants, even 70 kg humanoids are quite possible even on the heaviest of all reasonable Earthlike worlds. No need for “powerfully built, squat creatures, perhaps rather like an armoured pancake on multiple legs ... limited to slow, creeping motions across the surface.”

Of course, gravity will affect design. In any given mass category high-gee animals should have shorter, stockier bones than those evolving in low-gee environments. To provide proper support, bone cross-section must increase directly with weight. Weight is the product of mass and gravity, so bone diameter must be proportional to the square root of gravity.

Let’s apply this to man. The typical human femur, the most perfectly cylindrical and largest single bone in our bodies, measures 3.5 centimeters in diameter. Using the above square-root relation, we find that the thigh-bone should increase to 4.9 cm on a two-gee world or shrink to 1.6 cm on a 0.2-gee planet for identical support of a 70 kg human body mass. Experiments have confirmed that animals reared in high gravity grow thicker bones, stronger hearts, and lose fat, but alien creatures will not appear wildly over- or underbuilt as compared with Earth life of equal mass.

Alien Skeletons

Boneless lifeforms in the sea can grow to enormous sizes. There are other advantages to life without a rigid frame we can hardly appreciate. For instance, an octopus, often called the supreme escape artist, can stretch itself incredibly thin, passing rubberlike through small holes or narrow crevasses and sliding confidently across desktops and the decks of ships.

But a creature of land is a denizen of gravity. Surface life must evolve some means of physical support or be reduced to a groveling mass on the ground. On Earth the most common frameworks are the exoskeleton and the endoskeleton. The former, typified by insects and crustaceans, is a hollow bony tube packed with the creature’s viscera. The latter, which all vertebrates have, is a central spine from which vital organs hang like coats on a hat rack. Exoskeletons are bony material surrounding gut; endoskeletons are bone surrounded by gut.

Which design is better? Bioengineers point out that a tubular column always has greater strength than a solid beam of the same mass. Tubes give twice the resistance to bending and many times the opposition to buckling. Mechanical advantages are best exploited by exoskeletons because of the greater bony surface area to which muscles may be attached.

So why be vertebrate? The answer is that we’ve considered only static strength. Large endoskeletons outperform exoskeletons under dynamic impact loading – like falling out of trees – which is why the largest of all animal species have worn their bones on the inside. Massive alien insectoids are not impossible, just less likely. Falling impacts shouldn’t be as severe on low gravity planets, and large active arthropods might survive in a rich oxygen atmosphere. The greatest carapaced creatures on Earth have ranged in size from a tenth of a meter for the South American tarantula on land up to several meters for certain fossil marine arthropods.

ETs have other choices open to them. One of the most popular alternatives among xenobiologists is called the “basket skeleton” found on this planet in marine echinoderms (sea cucumbers. starfish, sea urchins) and the cormorant (a seabird of the pelican family). Physical stress passes through the body along a kind of bony trellis, an unusual internal arrangement which one wag has facetiously termed “bowels in a birdcage.”

Another possibility is the double spine or multiple endoskeleton. On Earth flatworms and other free-living turbellarians have twin neural channels running the length of their bodies. Alien “ladder skeletons” might improve postural stability and provide greater strength on high-gravity worlds, though turning or twisting motions of the trunk might be restricted even if the multiple support posts are jointed or segmented.

A third alternative is the “hydrostatic skeleton,” surprisingly common on Earth. Animal bodies are kept stiff by pressurized fluid trapped in a sack of tough skin. Mostly only small earthworms and nematodes have this support, but massive sea creatures such as sharks compress their innards to help negotiate sharp turns and even man uses the contents of his abdomen as a hydrostatic skeleton. Large aliens might evolve a liquid skeleton inside taut, fiber-strengthened tubes with extensive reinforcing musculature – purely hydrostatic caterpillars, for example, have about 4000 individual muscles as compared to less than 700 for a human being.

How Many Eyes?

Nature often uses the same solution to a given problem encountered by many independently evolved species. Perhaps one of the most striking instances of this “convergent evolution” is the “camera eye’’ invented separately by at least five major terrestrial animal phyla (chordates, mollusks, annelids, coelenterates and protists). Each have radically different developmental histories. Naturally there are a few discrepancies – for example, light-sensitive cells in molluscan eyeballs point towards the light, the opposite of vertebrates. But the adjustable lens. retina, pigments, focusing muscles, iris diaphragm, transparent cornea and eyelids all are immediately recognizable. Nature is perhaps trying to tell us something: The camera eye is ubiquitous because it’s simply the best design for the job, on this or any other world.

The next most successful – indeed more so if you just count species – is the compound eye of insects and crustaceans. Each organ looks like a small multifaceted jewel, actually a tiny bundle of optical tubes that direct light onto a large matrix of individual photosensitive spots on the retina. The image forms a composite mosaic of thousands of little light-dots. (Dragonfly eyes have more than 28,000 facets and can discern motion up to twelve meters away.) The compound eye, however, has such poor resolving power that an insect poring over this page of print would be quite unable to make out the individual letters, so large ETs will find the system unattractive. It seems best for smaller creatures – if a flea had a spherical lens eyeball like that of humans, the pupil would be so minute that diffraction effects would utterly ruin the image.

Other visual techniques of limited importance on Earth may be emphasized on other planets. For instance, alien species may have “pinhole camera” eyes like the chambered nautilus, a beautifully simple system consisting of an open optical pit without lenses, exceptionally useful in water. In the “scanning eye” of the snail, light penetrates a simple crystalline lens and is scanned by a single retinal nerve sensor moving across the visual field, slowly building up an image of the environment. The principle of the optical reflector telescope has never been developed for direct imaging on this world, though many species use a biological mirror assembly to increase camera eye sensitivity (the tapetum of the common tabby cat) or to attract prey using deep-sea “searchlights” in conjunction with bioluminescence (the retractable reflectors of the luminous squid).

How many eyes are best? Nature usually economizes, so a single receptor organ is good enough for nondirectional sensing. Most large organisms have but one organ of smell and one of taste. On the other hand, directional senses can make good use of the benefits of stereo. Triangulation and depth perception require at least two physically separated receptors, and there seems little to be gained by going to more than a single pair. As astronomer Carl Sagan once pointed out, “Three eyes represent not nearly the same improvement over-two that two represent over one.”

Nevertheless a few animal species do have more than one pair of imaging eyes. Zoologist Norman J. Berrill of McGill University in Montreal describes the dinnertime antics of the spider, which has four pairs of eyes: “The rear pair serve to watch behind for either food or danger. The other three pairs work together but in succession. If something comes within the range of vision of one of the outermost pair, the head turns until the object is brought into the field of the two pairs of eyes in the middle, and the spider then advances. When the object is brought into focus of the forward pair, the spider jumps to attack.” The ultimate limit is probably reached by the scallop, whose literally hundreds of tiny, beautifully constructed nonimaging “eyes” are spread around the circumference of its mantle like running lights on an ocean liner.

What about eyes on stalks? Most xenobiologists regard this as a rather unlikely adaptation for thinking animals. Eyestalks require a hydraulic support system inefficient except in small animals. Eyes are vital senses for large organisms, yet stalks could be lopped off by predators with a single stroke of claw or pincer, permanently depriving the owner of sight. Periscoping eyes unprotected by bone are also more prone to common injury – in an accident, stalks could be bumped, slammed or squashed all too easily.

Alien Senses

Vision, of course, is simply the detection of one narrow set of wavelengths of light within the entire electromagnetic spectrum. One alternative to “visual” sight is infrared (IR) vision, or seeing with heat waves. The rattlesnake is quite good at this – the creature has two imaging eyeballs operating in the visible, and two conical pits on either side of the head which permit binocular IR sensing of temperature differences as little as 0.002 °C. The theory of optics predicts that alien infrared eyeballs with resolution close to that of the human eye could have apertures as small as 4 centimeters at 93,000 Angstroms (the peak wavelength of black body radiation emitted by a warm human body). This compares well with the size of the eye of the Indian elephant (4.1 cm), the horse (5 cm), the blue whale (14.5 cm), and the largest cephalopods (up to 37 cm).

Radio vision is another possibility, although there are two major evolutionary problems with this. First, it is difficult (though not impossible) to imagine planetary surface conditions in which the illumination in the radio band is equal to or greater than the brightness in the visible, thus giving radio vision the competitive edge. Second, radio sensors would have to be on the order of 10-1000 meters wide to achieve human-eye acuity, though this resolution may not be absolutely necessary.

Assuming life evolves primarily on planetary surfaces and under air, other forms of vision – very low frequency, ultraviolet, and x-ray – are unlikely because these wavelengths are strongly absorbed during the passage through atmosphere or ocean. Static electric field sensing has been documented in numerous species, notably sharks and electric fishes, and sensitivity to magnetic fields has been found in snails, pigeons; dolphins, bees. and many other animals. The acoustical, tactile, and chemical spectra of sensation have also been well exploited by life on Earth.

One possible extraterrestrial sense often overlooked is the ability to detect radioactivity. On a world with highly concentrated radionuclide ores near the surface, or on a planet in the throes of a global nuclear holocaust, biological Geiger counters would give warning to steer clear of large tracts of radiation hazards. The “radioactive sense” was once artificially bestowed on a small group of laboratory animals by wiring portable Geiger counters directly to the fear center of feline brains. When confronted with a pile of radioactive materials in one comer of their cages, each cat shied away.

The key to alien senses is survival – any environmental information that would permit an animal to better compete for the limited resources available is a valid candidate for sensing. For example, we could imagine a sophisticated meteorological sensorium evolving on a world cursed with highly volatile, perpetually inclement weather. Humidity and barometric sensors would be essential, as would anemometers to calibrate wind velocity. The ability to sense changes in atmospheric composition, such as the carbon dioxide detectors possessed by honeybees and fire ants, would be useful. Atmospheric turbidity, closely related to developing weather patterns, greatly influences the degree of skylight polarization – sensors responsive to the intensity and distribution of polarized light might permit their owner to seek shelter from the elements before disaster struck. The seeming ability of many animals to sense an earthquake or tornado before it arrives may relate to their perception of very low frequency infrasonics or minute electrical field variations immediately preceding the event. And the allegation that elephants can sense water located a meter or so beneath the surface of apparently dry riverbeds is unproven scientifically, yet the fact remains that such biological dowsers would be tar more likely to survive on a drought-stricken planet.

How Many Legs?

On strictly mechanical grounds, three points are needed geometrically to define a surface plane – two points make only a line. ETs trying to stand up on just one or two levers will promptly fall flat on their faces. We bipedal humans manage to remain erect only because our large feet provide additional points of contact with the ground, but without toes or feet a minimum of three legs is necessary.

Are tripedal aliens possible? Traditional biologists say no. A walking three-legger must lift at least one limb off the ground, at which instant it loses its planar support base, a situation statically unstable and dynamically precarious. Four legs seem better from an engineering point of view, as the creature can remain balanced when a leg is in motion. Ancestral fishes only have fins in pairs, so mustn’t all limbs evolve in pairs as well?

Xenobiologists remain unconvinced. Most running bipeds and quadrupeds keep two or fewer limbs on the ground during locomotion, so three-point dynamic stability is probably unnecessary. Land life need not always evolve from pair-finned fishes – descendants of, say, a starfish might be odd-leggers. Most persuasive, however, is the simple fact that tripeds exist on Earth! The extinct Tyrannosaurus rex and a few large contemporary creatures such as the kangaroo run bipedally but stand tripedally. The tails of these animals are as strong and thick as the forelegs and are regularly used for postural support. Indeed, when kangaroos fight, they rear up on their tails, freeing both legs to deliver crushing kicks to opponents.

More legs than four are plausible even for massive, intelligent animals. Odd appendages are often used for highly specialized purposes, as witness the prehensile tail of monkeys and the dexterous trunk of elephants. The key to higher multipedia is neural control. The nervous circuitry for an extra limb is far less than that required to add, say, another eye. Muscles need thousands of new neurons, but eyeballs need millions. About one-third of the mammalian brain is committed to sensory functions, whereas only a small slice handles motor control, ETs are much more likely to have extra arms than extra eyes or ears.

Dr. Bonnie Dalzell, a writer-paleontologist who helped Larry Niven work out some of his fictional aliens, insists that vertebrates on Earth have four limbs solely because of the common descent from fishes adapted to free-swimming conditions in large open oceans. These fish needed only two independent sets of diving planes to make a go of it in the sea. Perhaps if we evolved instead from Euthacanthus, a Devonian Period fish boasting no fewer than seven pairs of fins, we might be hexapodal or more-podal today ourselves.

Dr. Dalzell expects to find intelligent six-leggers on worlds with small, shallow oceans. There, bottom-dwelling fishes would become the predominant coastal and freshwater lifeforms early in evolutionary history. If the planet has a very seasonal climate, perhaps accompanied by large-scale periodic evaporations of lakes and seas, few fish species could evolve into good swimmers as on Earth. Marine creatures with many pairs of fins would have the advantage, ultimately inheriting the land and producing a rich ecology of multipodal animal life.

There are many advantages to six-legged living. On high-gravity worlds hexapedia is a good way to distribute mechanical stresses and help reduce the danger of bone breakage. Injury or loss of a limb is more catastrophic for four-leggers than for six-leggers (who have “spares”). Hexapods also have better balance since, unlike quadrupeds, they can keep a stable support tripod on the ground even when running at high speeds. And it shouldn’t be too hard to coordinate all those legs. Says Dalzell: “Earthly insects with three pairs of legs are hardly noted for their well-developed mental powers, but most of them walk just fine.”

Of course, legs are not the only game in town. The potential of rotary motion (to pick one possibility of many) cries out for fulfillment. A few years ago biologists made the amazing discovery that the tails of tiny bacteria are driven by minute ionic motors complete with rotors, stators, bushings and freely-rotating drive shafts spinning up to 60 cycles per second. The rapid back-and-forth wiggling of flagella we see under the microscope is actually a complicated helical twisting movement more akin to a propeller screw than to a simple fishy undulation. This finding contradicts the long-standing dictum that living organisms may not contain detached, self-rotating parts.

Rotary motion may be possible for large animals too. Picture a small Earthlike world with little tectonic activity and broad, flat continental shelves flooded to a depth of five or ten meters during global warm spells. A creature not unlike the molluscan cuttlefish Sepia hovers near the bottom, stalking small fish, shrimps, and crabs, sometimes jetting about by expelling water rapidly from several exit portals like many other cephalopods. Occasionally sand particles jam in a portal, causing irritation. The animal responds by encasing them in a perfectly smooth spherical pearl, much like those of the modem oyster.

Millions of years later an Ice Age arrives. The retreating shoreline leaves behind vast tracts of smooth hard continental shelf. Forced into ever more turbid, colder, shallower waters, we might imagine our cuttlefish eventually abandoning the sea for land, evolving into a “caster creature.” Its jet ports now permanently plugged by large pearly structures almost from birth, these animals might develop the ability to roll along the graded continental raceways. Speed is controlled by internal sphincters aided by heat sensors for guided braking on gentle downhill stretches and a “low-gear” muscular assist for steep climbs. Tentacle arms like ski poles provide additional stability on fast runs along the coastline.

Air Power

How big could flying ETs evolve? On Earth the albatross is pretty close to the maximum. This 10 kilogram bird reaches wingspans up to four meters and needs a lengthy runway to achieve takeoff speed of 20 kph. This minimum velocity is called the “stall speed” and is partly determined by air density. Venusian pigeons could remain airborne at speeds ten times slower than their Earthly cousins, whereas Martian birds of similar size and shape would have to fly ten times faster to stay aloft.

The main factor fixing avian size is atmospheric pressure, not gravity as some erroneously believe. On high-pressure worlds, alien bird creatures can have surprisingly small wings and large masses. An extraterrestrial with the mass of a man could fly with the wings of an albatross in air just five times thicker than Earth’s, and a Venusian albatross could make do with stubby wings smaller than the page on which these words are printed.

Planetary surface gravity has less effect on size in part because it varies far less than air density from world to world. For the same ease of flight a pigeon on a 2-gee planet with Earthlike air must increase total wing area by only 75 percent; on a bantam-weight 0.2-gee world, wing surface may decrease 75 percent. Gravity also influences stall speed. An albatross on a 2-gee planet needs a 40-percent runway extension; on a 0.2-gee world it can get by with 55 percent less. Massive extraterrestrial avians are more likely on puny planets with dense atmospheres.

How many wings are best? Most common among terrestrial species is a single pair which generate lift by actively beating the air something like the blades of a helicopter rotor. Less common is the “airplane” system, with one pair producing passive lift (like the wings of an airplane) and a second pair taking the more active role (like propellers). Adding yet more wings would serve no useful purpose, hence are unlikely to evolve. Only a very few insect species on Earth retain vestigial traces of an ancestral third wing pair, and these are degenerate and useless for flight.

Alien air travelers may have no wings at all! There are many alternatives that have never been fully exploited by evolution on this planet. Consider, for example, the principles of the rocket, the glider, and the balloon.

A high-gravity world with abundant seas and a warm, thick oxygen atmosphere might produce a “rocket fish” predator, patrolling the coastal shallows and preying on bird-sized torpid insect life thickly swarming high up. Much like the toy plastic projectiles that shoot the length of a playing field when fully charged with water and compressed air, the rocket fish bolts from the sea skyward and mouthes its dinner on the fly. Such an animal must have a sturdy posterior pressure canister that can be discharged rapidly through a rigid bony nozzle, rechargeable in minutes using powerful sphincter muscles, internal gas generation, or osmosis. Earthly precedents include the jet propulsion of squids and octopuses, the pressurized chemical sprays of warrior termites, and the boiling liquid jet of the bombardier beetle.

A lightweight planet with high winds might be ideal for the evolution of sentient “parachute beasts,” large aerial aliens able to navigate the airways of their world by manipulating sturdy chutes or simple gliding surfaces. Vultures can sail for hours with little effort using strong mountain updrafts to gain altitude, but other worlds may be even better suited for this mode of flight. Further terrestrial precedent includes the aerial dispersal of spider young – spiderlings crawl to the tip of a blade of grass, raise their tiny abdomens and let fly a thin silken thread, then hop aboard as a gust of wind catches the gossamer strands and whisks them away into the sky.

The idea of balloonlike living organisms is an old one both in science and science fiction. Bonnie Dalzell designed an “airship beast” for the Pick-a-Planet exhibit at the Smithsonian’s National Air and Space Museum. These creatures supposedly inhabit a world with cold winters, heavy gravity and a thick atmosphere. Twice a year the herbivorous hundred-kilogram blimps inflate their many lifting bags with metabolically generated hydrogen gas and drift to the opposite hemisphere to avoid the seasonal chill. Strong winds are an advantage, but predators are numerous and many noble aeronauts are lost during the migrations when a chance bolt of lightning strikes and ignites their flammable bodies. On Earth the Portuguese man-of-war, the chambered nautilus, and swim bladders in fishes provide precedent for a balloon lifestyle in a fluid medium.

Sail power has also been largely neglected in biology for animal locomotion. One of the few examples on this planet is Velella, a small, baggy, disk-shaped sea creature whose sail-like dorsal fin permits it to drift slowly with the wind. Another example is, surprisingly, the whale. These majestic cetaceans sometimes “stand on their heads” exposing only their giant broadleaf tails above water, catching gusts of wind and playfully “sailing” for hundreds of meters before coming up for air.

More than forty years ago Olaf Stapledon speculated on the possibility of a true biological sailboat. Let us imagine a cephalopod with a heavy concave shell living in the bays and estuaries of some alien world. Over the years the species gradually acquires the ability to float boatlike on the inverted shell as an aid in migration. These creatures drift with the shore currents, feeding on surface algae and nibbling the tops of seaweed stalks. In time the shell could become better adapted for navigation, perhaps with a streamlined undercarriage, allowing the ET to better chart its course between known patches of food and to escape its predators. Eventually it gains still more speed with a crude sail, a thin membrane growing from a shank of cartilage in the animal’s belly. With further evolution the membrane becomes retractable, even delicately manipulatable by fine muscles. At last the emergence of a brain and sensory organs strictly comparable to those of higher mollusks on Earth makes possible a kind of living clipper ship complete with masthead (forward sensors), jib, mainsail, riggings (extensible tendon), and a rudder.

Every habitable planet has millions of living species and billions of extinct ones, and there are many trillions of useful planets in the universe. This adds up to an incredible diversity of life. Christian Huygens wrote in The Celestial Worlds Discover’d (1698) that “Nature seems to court variety in her Works, and may have made them widely different from ours either in their matter or manner of Growth, in their outward Shape, or in their inward Contexture; she may have made them such as neither our Understanding nor Imagination can conceive.” Whether Huygens’s prophecy is true is something we can determine only by traveling to faraway worlds and sampling extraterrestrial ecologies at close hand. Perhaps, someday soon, we will make this epic journey.


Norman J. Berrill, Worlds Without End: A Reflection on Planets, Life and Time, Macmillan, New York, 1964.

R. McNeill Alexander, G. Goldspink, eds., Mechanics and Energetics of Animal Locomotion, John Wiley & Sons, New York, 1977.

Bonnie Dalzell, “Exotic Bestiary for Vicarious Space Voyagers,” Smithsonian 5 (October 1974):84-91.

Doris Jonas, David Jonas, Other Senses, Other Worlds, Stein and Day, New York, 1976.

Robert A. Freitas Jr., “Xenobiology,” Analog 101(30 March 1981):30-41.

Olaf Stapledon, Star Maker, Methuen, 1937. Reprinted: Penguin Books, Baltimore, Maryland, 1972.

From EXTRATERRESTRIAL ZOOLOGY by Robert A. Freitas Jr. (1981)


Before space flight it was often predicted that other planets would appeal strictly to the intellect. Even on Earthlike worlds, the course of biochemical evolution must be so different from the Terrestrial—since chance would determine which of many possible pathways was taken—that men could not live without special equipment. And as for intelligent beings, were we not arrogant to imagine that they would be so akin to us psychologically and culturally that we would find any common ground with them? The findings of the earliest extra-Solar expeditions seemed to confirm science in this abnegation of anthropomorphism.

Today the popular impression has swung to the opposite pole. We realize the galaxy is full of planets which, however exotic in detail, are as hospitable to us as ever Earth was. And we have all met beings who, no matter how unhuman their appearance, talk and act like one of our stereotypes. The Warrior, the Philosopher, the Merchant, the Old Space Ranger, we know in a hundred variant fleshly garments. We do business, quarrel, explore, and seek amusement with them as we might with any of our own breed. So is there not something fundamental in the pattern of Terrestrial biology and in Technic civilization itself?

No. As usual, the truth lies somewhere between the extremes. The vast majority of planets are in fact lethal environments for man. But on this account we normally pass them by, and so they do not obtrude very much on our awareness. Of those which possess free oxygen and liquid water, more than half are useless, or deadly, to us, for one reason or another. Yet evolution is not a random process. Natural selection, operating within the constraints of physical law, gives it a certain direction. Furthermore, so huge is the galaxy that the random variations which do occur closely duplicate each other on millions of worlds. Thus we have no lack of New Earths.

Likewise with the psychology of intelligent species. Most sophonts indeed possess basic instincts which diverge more or less from man's. With those of radically alien motivations we have little contact. Those we encounter on a regular basis are necessarily those whose bent is akin to ours; and again, given billions of planets, this bent is sure to be found among millions of races.

Of course, we should not be misled by superficial resemblances. The nonhuman remains nonhuman. He can only show us those facets of himself which we can understand. Thus he often seems to be a two-dimensional, even comic personality. But remember, we have the corresponding effect on him. It is just as well that the average human does not know on how many planets he is the standard subject of the bawdy joke.

Even so, most races have at least as much contrast between individuals—not to mention cultures—as Homo Sapiens does. Hence there is a degree of overlap. Often a man gets along better with some nonhuman being than he does with many of his fellowmen. "Sure," said a prospector on Quetzalcoatl, speaking of his partner, "he looks like a cross between a cabbage and a derrick. Sure, he belches H2S and sleeps in a mud wallow, and his idea of fun is to spend six straight hours discussin' the whichness of the wherefore. But I can trust him—hell, I'd even leave him alone with my wife!"

—Noah Arkwright
An Introduction to Sophontology

From INTRODUCTION: A SUN INVISIBLE by Poul Anderson (1966)

     "As I remember," he said, collecting his thoughts rapidly, "the biologists asked themselves the question, 'If we had no preconceived ideas, and were starting with a blank sheet of paper-how would we design an intelligent organism?"'
     "I'm not much of an artist," Floyd apologized, after he had managed to borrow paper and pencil, "but the general conclusion was something like this."
     He sketched quickly, and when he had finished Mr. Kelly said, "Ugh!"

     "Well," chuckled Floyd, "beauty lies in the eye of the beholder. And talking of eyes, there would be four of them, to provide all-round vision. They have to be at the highest part of the body, for good visibility—so."
     He had drawn an egg-shaped torso surmounted by a small, conical head that was fused into it with no trace of a neck. Roughly sketched arms and legs were affixed at the usual places.
     "Getting rid of the neck removes a fundamental weakness, we only need it because our eyes have a limited field of view, and we have to turn our heads to compensate."
     "Why not a fifth eye on top, for upward vision?" asked Kaminski, in a tone of voice which showed what he thought of the whole concept.
     "Too vulnerable to falling objects. As it is, the four eyes would be recessed, and the head would probably be covered with a hard protective layer. For the brain would be somewhere in this general region—you want the shortest possible nerve connections to the eyes, because they are the most important sense organs."
     "Can you be sure of that?"
     "No—but it seems probable. Light is the fastest, longest-ranging carrier of information. Any sentient creature would surely take advantage of it. On our planet, eyes have evolved quite independently, over and over again, in completely separate species, and the end results have been almost identical."
     "I agree," said Whitehead. "Look at the eye of an octopus—it's uncannily human. Yet we aren't even remote cousins."

     "But where's the thing's nose and mouth?" asked Mrs. Kelly.
     "Ah," said Floyd mischievously, "that was one of the most interesting conclusions of the study. It pointed out the utter absurdity of our present arrangements. Fancy combining gullet and windpipe in one tube and then running that through the narrow flexible column of the neck! It's a marvel we don't all choke to death every time we eat or drink, since food and air go down the same way."
     Mrs. Kelly, who had been sipping at a highball, rather hastily put it down on the buffet table behind her.
     "The oxygen and food intakes should be quite independent, and in the logical places. Here."
     Floyd sketched in what appeared to be, from their position, two oversized nipples.
     "The nostrils," he explained. "Where you want them—beside the lungs. There would be at least two, well apart for safety."
     "And the mouth?"
     "Obviously—at the front door of the stomach. Here."
     The ellipse that Floyd sketched was too big to be a navel, though it was in the right place, and he quickly destroyed any lingering resemblance by insetting it with teeth.
     "As a matter of fact," he added, "I doubt if a really advanced creature would have teeth. We're rapidly losing ours, and it's much too primitive to waste energy grinding and tearing tissues when we have machines that will do the job more efficiently."
     At this point, the Vice-President unobtrusively abandoned the canape he had been nibbling with relish.
     "No," continued Floyd remorselessly. "Their food intake would probably be entirely liquid, and their whole digestive apparatus far more efficient and compact than our primitive plumbing."

     "I'm much too terrified to ask," said Vice-President Kelly, "how they would reproduce. But I'm relieved to see that you've given them two arms and legs, just like us."
     "Well, from an engineering viewpoint it is quite hard to make a major improvement here. Too many limbs get in each other's way; tentacles aren't much good for precision work, though they might be a useful extra. Even five fingers seems about the optimum number; I suspect that hands will look very much the same throughout the universe even if nothing else does."

     "And I suspect," said Kaminski, "that the people who designed our friend here failed to think far enough ahead. What's the purpose of food and oxygen? Why, merely combustion, to produce energy-at a miserable few percent efficiency. This is what our really advanced extraterrestrial will look like. May I?"
     He took the pen and pad from Floyd, and rapidly shaded the egg-shaped body until the air and food intakes were no longer visible. Then, at waist level, he sketched in an electric power point-and ran a long cable to a socket a few feet away.
     There was general laughter, in which Kaminski did not join, though his eyes twinkled.
     "The cyborg-the electromechanical organism. And even he-it is only a stepping stone to the next stage-the purely electronic intelligence, with no flesh and-blood body at all. The robot, if you like-though I prefer to call it the autonomous computer."

From THE LOST WORLDS OF 2001 by Sir Arthur C. Clarke (1972)

Conditions are so difierent on Mars and—to our earth-centered feelings—so inferior from those on earth that scientists are confident no intelligent life exists there. If life on Mars exists at all (the probability of which is small, but not zero) it probably resembles only the simplest and most primitive terrestrial plant life.

Still, even granted that the likelihood of complex life is virtually nonexistent; we can still play games and let our fancy roam. Let us suppose that we are told flatly: “There is intelligent life on Mars, roughly man-shaped in form.” What reasonable picture can we draw on the basis of what we now know of Mars—bearing always in mind that the conclusions We reach are not to be taken seriously, but only as an exercise in fantasy?

In the first place, Mars is a small world with a gravitational force only two-fifths that of earth. If the Martian is a boned creature, those bones can be considerably slenderer than ours and still support a similar mass of material (an inevitable mechanical consequence of decreased weight). Therefore, even if the torso itself were of human bulk, the legs and arms of the Martian would seem grotesquely thin to us.

Objects fall more slowly in a weak gravitational field and thus the Martians could afford to have slower reflexes. Therefore, they would seem rather slow and sleepy to us (and they might be longer-lived because of their less intense fight with gravitation). Since things are less top-heavy in a low-gravity world, the Martian would probably be taller than earth people. The Martian backbone need not be so rigid as ours and might have two or three elbowlike joints, making stooping from his (possible) eight-foot height more convenient.

The Martian surface has been revealed by the Mars-probe, Mariner IV, to be heavily pockmarked with craters, but the irregularities they introduce are probably not marked to a creature on the surface. Between and Within the craters, much of the surface is probably sandy desert. Yellow clouds obscuring the surface are occasionally detected and, in the 1920s, the astronomer E. M. Antoniadi interpreted these as dust storms. To travel over shifting sands, the Martian foot (like that of the earthly camel) would have to be flat and broad. That type of foot, plus the weak gravity, would keep him from sinking into the sand.

As a guess, the feet might be essentially triangular, with three toes set at 120° separation, with webbing between. (No earthly species has any such arrangement, but it is not an impossible one. Extinct flying reptiles, suchlas the pterodactyl, possessed Wings formed out of webbing extending from a single line of bones.) The hands would have the same tripod development, each consisting of three long fingers, equally spaced. If the slender finger bones were numerous, the Martian finger would be the equivalent of a short tentacle. Each might end in a blunt swelling (like that of the earthly lizard called the gecko), where a rich network of nerve endings, as in human fingertips, would make it an excellent organ for touching.

The Martian day and night are about as long as our own, but Mars is half again as far from the sun as we are, and it lacks oceans and a thick atmosphere to serve as heat reservoirs. The Martian surface temperature therefore varies from an occasional 90° Fahrenheit, at the equatorial noon, down to a couple of hundred degrees below zero, by the end of the frigid night. The Martian would require an insulating coating. Such insulation might be possible with a double skin; the outer one, tough. horny, and water impervious, like that of an earthly reptile; the inner one, soft, pliable, and richly set with blood vessels, like that of an earthly man. Between the two skins would be an air space which the Martian could inflate or deflate.

At night the air space would be full and the Martian would appear balloonlike: The trapped air would serve as an insulator, protecting the warmth of the body proper. In the warm daytime, the Martian would deflate, making it easier for his body to lose heat. During deflation, the outer skin would come together in neat, vertical accordian pleats. The Martian atmosphere, according to Mariner IV data, is extremely thin, perhaps a hundredth the density of our own and consisting almost entirely of carbon dioxide. Thus, the Martian will not breathe and will not have a nose, though he will have a strongly muscled slit—in his neck, perhaps— through which he can pump up or deflate the air space. What oxygen he requires for building his tissue structure must be obtained from the food he eats. It will take energy to obtain that oxygen, and the energy supply for this and other purposes may come directly from the sun. We can picture each Martian equipped with a capelike extension of tissue attached, perhaps to the backbone. Ordinarily, this would be folded close to the body and so would be inconspicuous.

During the day, however, the Martian may spend some hours in sunlight (clouds are infrequent in the thin, dry Martian air) with his cape fully expanded, and resembling a pair of thin, membranous wings reaching several feet to either side. Its rich supply of blood vessels will be exposed to the ultraviolet rays of the sun, and these will be absorbed through the thin, translucent skin. The energy so gained can then be used during the night to enable the necessary chemical reactions to proceed in his body.

Although the sun is at a great distance from Mars, the Martian atmosphere is too thin to absorb much of its ultraviolet, so that the Martian will receive more of these rays than we do. His eyes will be adapted to this, and his chief pair, centered in his face, will be small and slitlike to prevent too much radiation from entering. We can guess at two eyes in front, as in the human being, since two are necessary for stereoscopic vision—a very handy thing to have for estimating distance.

It is very likely that the Martian will also be adapted to underground existence, for conditions are much more equable underground. One might expect therefore that the Martian would also have two large eyes set on either side of his head, for seeing by feeble illumination. Their function would be chiefly to detect light, not to estimate distance, so they can be set at opposite sides of the head, like those of an earthly dolphin (also an intelligent creature) and stereoscopic vision in feeble light can be sacrificed. These eyes might even be sensitive to the infrared so that Martians can see each other by the heat they radiate. These dim-vision eyes would be enormous enough to make the Martian face wider than it is long. In daytime, of course, they would be tightly closed behind tough-skinned lids and would appear as rounded bulges.

The thin atmosphere carries sound poorly, and if the Martian is to take advantage of the sense of hearing, he will have to have large, flaring, trumpetlike ears, rather like those of a jackrabbit, but capable of independent motion, of flaring open and furling shut (during sandstorms, for instance).

Exposed portions of the body, such as the arms, legs, ears, and even portions of the face which are not protected by the outer skin and the airtrap within, could be feathered for warmth in the night.

The food of the Martian would consist chiefly of simple plant life, which would be tough and hardy and which might incorporate silicon compounds in its structure so that it would be gritty indeed. The earthly horse has teeth with elaborate grinding surfaces to handle coarse, gritty grass, but the Martian would have to carry this to a further extreme. The Martian mouth, therefore, might contain siliceous plates behind a rounded opening which could expand and contract like a diaphragm of a camera. Those plates would work almost like a ball mill, grinding up the tough plants.

Water is the great need. The entire eater supply on Mars is equal only to that contained in Lake Erie, according to an estimate cited by astronomer Robert S. Richardson. Consequently, the Martian would hoard the water he consumes, never eliminating it as perspiration or wastes, for instance. Wastes would appear in absolutely dry form and would be delivered perhaps in the consistency, even something of the chemical makeup, of earthly bricks.

The Martian blood would not be used to carry oxygen, and would contain no oxygen-absorbing compound, a type of substance which in earthly creatures is almost invariably strongly colored. Martian blood, therefore, would be colorless. Thus the Martian skin, adapted to ultraviolet and absorbing it as an energy source, would not have to contain pigment to ward it off. The Martian therefore would be creamy in color.

The extensible light-absorbing cape, particularly designed for ultraviolet absorption, might reflect longwave visible light as useless. This reflected light could be yellowish in color. This would cause our Martian to seem to be (when he was busily absorbing energy from solar radiation) a dazzling white creature with golden wings and occasional feathers. So ends our speculation—in a vision of Martian forms not so far removed from the earthman’s fantasies of the look of angels.

From ANATOMY OF A MAN FROM MARS by Isaac Asimov (1965)

      For at least the last three decades, a large number of science fiction writers have been confronted, at one time or another, with the problem of constructing extraterrestrial lifeforms. Naturally the professional chemists and biologists who write science fiction on the side did best, not so much because their professional knowledge led them for long distances on hitherto untrodden paths, but because it made them stop at the right moment.
     As regards those who were primarily writers, the results make one suspect that they at first tried to apply what biology they knew. Since this apparently did not get them very far, they presumably threw overboard whatever it was they had not quite arrived at and wrote things like this: “Surprisingly, the aliens were quite human in shape, the only major differences, or at any event the ones which were easily visible, being a strong tail and a bluish complexion.”
     Or else, if the actual contact with the aliens could be fleeting, they resorted to saying that the forms the Earthmen beheld were so alien, so outside of all terrestrial experience, that it was impossible to describe them.

     However, the occasional science fiction writer of the past was not the only type of creative genius who did, or could have, exerted ingenuity in the building of an extraterrestrial. There were many others who engaged in a very similar line of endeavor for the purpose of representing gods, demons or just outlandish creatures, somewhat along the line of the Midnight Marvels to which I devoted a column some months ago.
     To put it bluntly, nobody showed much imagination and the method was standardized at an early age:
     Combine the features of various kinds of living creatures into something that could be drawn, painted or sculptured and the job was done. Put a woman’s head on a feline body and you had a sphinx. Add the head of a bird to the body of a man and you had ibis-headed Thoth. Take a horse and supply it with the wings of an eagle and Pegasus was ready for flight, though with lateral stability only. Take another horse, cut off its head and graft the upper half of a man’s body to it and the centaur was ready.

     So you obviously cannot produce a biologically possible or even believable creature by the (random or artistic) combination of separate parts. Fine — but how can you go about it? All I can say offhand is that it isn’t easy; so much depends on so many different circumstances.
     There is, in the first place, the planetary environment, consisting of such factors as either much water or very little water; temperature which depends mainly but not only on the distance of the planet from its sun; seasonal changes which depend on the inclination of the axis of rotation of a planet to the plane of its orbit around the sun.
     It depends on the presence or absence of a large moon (or moons) because, with a large and nearby moon, you get pronounced tides, while without a moon, or only very small moons, you only have the solar tide, which is likely to be unimpressive. The relative abundance of the chemical elements in the outer crust and in the atmosphere certainly also plays a role.

     Let us, for a first test, take our two neighbors in the Solar System, Venus inside the Earth’s orbit and Mars outside it.
     When I started reading books on science, as a schoolboy, Venus, in most of them, was firmly declared to be a panthalassa, the technical term for a planet completely covered by water without any land showing. This, after various attempts to be “different,” has recently been revived by Whipple and Menzel as the most likely concept.
     Now such a shoreless ocean — I am avoiding all other consideration and am concentrating on just the one fact that it is an ocean — can harbor virtually everything in abundance. But with limitations; you can’t just mix the fauna of the equatorial Pacific Ocean of today with equatorial seas of the Jurassic and Cretaceous periods and obtain a believable or even possible picture.
     You can have, if you want to, most of the arthropods, lobsters and sea spiders, trilobites and, if you insist, something like a seagoing centipede. But you must specify that there are shallow areas in this ocean if you want to have clams, for they don’t grow too far down. You can have jellyfish in fantastic numbers of species as well as individuals.
     You can have octopi and all sorts of fishes. But you can’t have a turtle, for example, because when, in Earth’s past, some fishes went up on land, they first produced what we now call amphibia — say, primitive salamanders — and the reptiles, the birds and the mammals came afterward. They all are creatures of the land, even though some reptiles, like the turtles and the sea snakes, and some mammals, like the whales and the seals, returned to the ocean at a later date.
     And don’t make anything more intelligent than the most intelligent fish — I don’t know which fish that is or could be — for the open sea is a region of steady movement and no intelligence is needed for that. The exceptions to the statement that this is a region of movement are armored forms like clams, but a perfectly sessile creature which relies on its armor for individual protection and on numerous offspring for survival of the species also is not going to develop intelligence. It doesn’t need any.
     So a shoreless Venusian ocean — I repeat I am concentrating on no other fact than that it is a shoreless ocean — might harbor a very varied life and some forms may be rather pretty. But I challenge anybody to think up an aquatic form of life, especially among the invertebrates, which would look radically different from what we have in our oceans. The multitude of forms on our own planet is so overwhelming that one always gets the impression that anything that can survive with the shape it has is also in existence.

     One thing is absolutely needed in this shoreless ocean if it is to have any life at all. There must be plants, microscopic or otherwise, because animal life alone is an impossibility.
     You know the old tall tale about the man who made a living by having a mouse and cat farm. The cats, of course, ate the mice, and when the cats were big enough, he killed and skinned them, sold the pelts and fed the cat’s bodies to the mice. Even if the mice were carnivorous, this just wouldn’t work. Somewhere at the beginning of such a cycle, there has to be the original food producer, the plant, which makes living (and edible, as a rule) tissue out of dissolved minerals, carbon dioxide and sunlight for energy.

     I might as well, at this point, present two strong hints at caution. If, in that sea, you have a tribe of Kraken, octopi a mile in circumference and the largest thing in the ocean, don’t make them smart. If they are the largest thing in the ocean, immune to all danger except an occasional outburst of the elements, such as a submarine volcano opening up, and, of course, old age, they don’t have to be intelligent. What has been said about oysters a while ago applies also to the invulnerable life-form.
     Likewise, don’t make something one millimeter in diameter into an intelligent life-form. Some time ago, somebody wrote a story in which the main character, who was not a hero, caught what he thought to be a shiny wasp. It stung him so hard that he had to let go — and then noticed to his surprise that the wasp sting made his Geiger counter chatter wildly. The implication was, of course, that this was a tiny spaceship with atomic drive.
     Though I liked the story, I knew that this could never happen. In order to be intelligent enough to even discover atomic energy, a being has to have a rather large number of brain cells. These brain cells must be nourished, which needs organs for eating and digesting food. The digestive tract must be protected by some covering and this package must be moved around in some manner so that it can find food. It must also move around to avoid being eaten, at least until it has attained the intelligence that splits atoms and controls what they do after splitting.
     It has been said and bolstered with many pounds of statistics that, in a modern army, 98 men are needed to ehable two men to shoot at the enemy. This relationship must apply also to the number of cells needed to support the brain cells that do the thinking. Since a cell, in order to function as a cell, must consist of a very large number of molecules and since the size of molecules is a given fact, there must be a minimum size for a functioning cell.
     L. Sprague de Camp, who was to my knowledge the first to present this chain of reasoning (in a two-part article in Astounding, May and June issues of 1939), came to the conclusion that an overall body weight of around 40 pounds would be needed if you want intelligence on the human level.
     It is possible that a few facts permit a little more stretching, so that the minimum weight could be less. But the reasoning itself is valid and the reduction cannot be very much. Whether the first interstellar hero has to establish relations with something weighing 45 or only 30 pounds does not make much of a difference.
     But I did not want to slip out of our solar system yet.

     Now if we look at Mars, we are helped no end by the fact that we know a great deal about it. Here is a small planet with very little water and a thin atmosphere consisting mostly of inert nitrogen. It is generally a cold planet, but during the summer the equatorial regions can attain temperatures between 60 and 70 degrees Fahrenheit at noon. To make our problem still easier, we are virtually certain that we see plant life (this was written in those innocent days of 1956 when they still though Mars had visible signs of plant life, instead of the huge dust storms we now know are the case).
     The dark greenish patches which all bear nice classical names due to Signor Schiaparelli of half a century ago cannot just be mineral discolorations. When covered up by yellow dust from the deserts, they manage to break through again and just during the last close approach of Mars, in 1954, Dr. Earl C. Slipher, working at Bloemfontein, South Africa, found a new one almost the size of Texas under about 15° northern Martian latitude and about 235° Martian longitude, which means about halfway between the northern end of Syrtis major and Trivium Charontis, two well-known Martian markings.

     There has been a lot of discussion recently in learned journals on whether any terrestrial plant could grow on Mars, and if so, which one. Naturally any suggestion made by anybody was countered with heavy arguments by somebody else. But the fact remains that we see something growing on Mars which is, in our terminology, plant life. If we do not understand their biochemistry under the conditions we are forced to assume from astronomical observations, this can only mean one of two things:
     Either we cannot observe all the conditions and something which we have missed, or are bound to miss with present instrumentation, is a perfectly fine explanation; or else we don’t know enough biochemistry and there is a way of living and growing under these conditions.
     The reasoning that forced us to say that there must be plant life in the Venusian oceans, if we want animal life of any kind, almost forces us to say that, since there are plants on Mars, there must be something that we would call animals.
     Some biologists with whom I discussed this stated with professional caution that this reasoning does not necessarily hold true. I don’t agree. Speaking in the largest sense, the animals of Earth, from sow bugs to elephants, are parasitic on plants. Now life, at least on Earth, behaves in such a manner that if there is something to be parasitic on, something else will be happy to take over the role of the parasite.
     Something feeding on these Martian plants must have the power of movement because it needs so much plant tissue for its own sustenance that the rate of the plant growth cannpt furnish the necessary amount. Hence it must be capable of locomotion.
     Whether this supposed Martian plant-eater is built along the lines of a locust, or along the lines of a desert tortoise, or along those of a rabbit is something entirely different again. One can assume that it simply freezes into a deathlike state during the cold Martian rlight and remains in that state until thawed out by the Sun. In. that case, it could be insectlike in organization.
     One can assume with equal justification that the “animal,” at the first sign of cold in the evening, burrows into the ground for a few feet and goes to sleep normally in an environment where the temperature may be quite cold, but where there is very little deviation from whatever temperature it may have. In that case, it could be something comparable to a desert tortoise.
     Or you can make the assumption that it has an internal mechanism like the birds and mammals of Earth, something producing heat. Then it does not have to dig itself in. All it needs is an effective heat insulator around its body, which might be hairlike, or featherlike,' or, if this sounds more “alien,” something like bark or sponge rubber.

     So far, I have mostly talked about extraterrestrial animal life in order to show some of the difficulties. When it comes to an extraterrestrial intelligent lifeform, the difficulties rapidly increase in number and kind.
     It may come as a surprise, but the first tentative recipe for the construction of an intelligent extraterrestrial was written by the Dutch physicist, philosopher and astronomer Christian Huyghens. The title of the book is Kosmotheoros and it appeared posthumously, in 1692, at first in Latin. Nobody seems to know just when Huyghens wrote the major portion of the book.
     He said there that an extraterrestrial must have eyes and ears — that is, senses “and pleasure arising from his senses.” He must know the art of writing to remember things, arithmetic and geometry to understand relationships, hands to make things — and he must be upright.
     It does not become quite clear from Huyghens’ book why he must be upright. It sounds as if Huyghens made this condition to free the forelimbs from the task of locomotion so that there are “hands to make things.”
     The insistence struck me as amusing because Sprague de Camp, in the articles mentioned, also was insistent on that point, but more for mechanical reasons. The brain must be protected against shock as much as possible and the more bone, cartilage and tissue there is between the feet, which take the shocks, and the brain, the better.
     All this is sound logic and it is obvious that the body of the extraterrestrial must be such that it functioned well as an animal body before it grew to be intelligent. Of course, one can postulate that accidental enviromental conditions of the past helped along.
     Around the turn of the century, a number of biologists and zoologists toyed with the idea that Man had evolved in what they called an asylum, an area accidentally free from large predatory animals and with a gentle climate. They obviously did not think much of the human body as a well-functioning animal. We now know that they were wrong and that the idea of the “asylum” is not needed. But it may conceivably have happened somewhere else, for the Galaxy must be full of planets and possibilities.

     There is just one major difficulty in imagining a believable intelligent extraterrestrial — we have never seen one. What I mean by this remark is this:
     We know the organization of living animal tissue on Earth. We know that the organization of the mammal is superior. True, it “wastes” food by making its own heat, but this fact makes it climatically independent. And though a reptile can do quite well in the proper climate, it is very limited. When the air grows too cold, it must be inactive, though it usually survives. When the air grows too hot, it dies of heat stroke, for, lacking a temperatureregulating mechanism, it not only cannot keep warm, it also cannot keep cool.
     Now this vertebrate body, whether mammalian or reptilian, has two pairs of limbs and usually a tail. What we don’t know is Whether it has to be built that way.
     To use a classical example: we don’t know whether the centaur shape is possible or not. On Earth, it doesn’t exist; that much is certain. But is this due to an anatomical necessity for which we don’t know the reason or did it just happen that way here?
     As for comparatively minor matters, we do know that they just happened. Genus Homo is tailless and almost hairless. But it doesn’t have to be hairless and tailless to invent writing, to build and ride cars and to engage in research, politics and crime.
     If we had fur and a tail, our fashions, habits and morals would be different, but if brain and senses and hands were unchanged, we’d still write books and symphonies, build houses, ships and airplanes — and try to build an extraterrestrial.

EXTREME ALIENS know how there are creatures that dwell in the most inaccessible, inhospitable places above, on and under the Earth and in her oceans? I am talking about life-forms you can find in any handbook of zoology, as opposed to those fearsome beings of the Cthulhu Cycle which which we are now so familiar. Well, there are also creatures which exist in the most obscure and random corridors and corners of time, in lost and unthinkable abysses of space, and in certain other twilight places which are most easily explained by referring to them as junctions of forces neither temporal nor spacial, places which by all rights should only exist in the wildest imaginings of theoreticians and mathematicians...

...Suffice to say, then that there are extreme forms of life within and without this universe of ours. And I know it to be so for I have seen or learned of many such forms.

for instance:

...intelligent energies in the heart of a giant alien sun who measure time in ratios of nuclear fission and space in unimaginable degrees of pressure! There are wraithlike biological gasses which issue at the dark of their moon from the fissures of a fungoid world in Hydra, to dance away their brief lives until, exhausted, they die at dawn, scattering the sentient seeds of mushroom minds which will sprout and take root, and whose crevice-deep roots will in turn emit at the dark of the moon euphoric, spore-bearing mists of genesis.

There is a dying purple sun on Andromeda's rim whose rays support life on all seven of its planets. On the fourth planet there are exactly seventeen forms of life, or so it would appear. On closer inspection, however, a zoologist could tell you that these forms are all different phases of only one life-form! Consider the batrachian and lepidopterous cycles of Earth life and this might not seem too astonishing, until I tell you that of these seventeen phases two are as apparently inanimate mineral deposits, six are aquatic, two others amphibious, three land-dwelling cannibals, three more are aerial and the last is to all intents and purposes a plant while all of its preliminary stages (excluding the mineral phases) were animal...


The starcraft gathered the fabric of time and space. Chayn passed stars and groupings of stars, dense clusters of young stars and swirling clouds of dust and gas giving birth to new light in their depths. Black holes tunneled through the space-time structure into elsewhere, glowing ominously as matter spiraled down to annihilation. Chayn could perceive it all, but he focused his attention on the mind fields.

Uncountable multitudes of worlds circles perhaps a third of the stars in his view. Most were lifeless, barren worlds of rock and snow, but even the tiny fraction that had given birth to life emanated a broad mind field that he could sense everywhere. There were worlds of microscopic life and paradises of forests and jungles teaming with dramas of life and death. There were worlds ancient and wise in the ways of evolution, but what Chayn watched for were the sparks of intense awareness, life on levels near his own. Intelligence too far in advance of him were incomprehensible, aware of his passage, but apathetic. Most life forms on his own level were alien, different in inexplicable ways. He felt he could adapt to some of those strange and beautiful worlds if necessary, but he staved his hunger and waited for the worlds of man.

The Watcher told him that man had lived for eons, evolving to the greatness of the stargods, but that man in this galaxy had recently arrived in fleets of starships after sleeps of many millennia. The worlds of man were new here while Earth recycled its continents and evolved new species of life...

...Danger lay immediately ahead, a gulf of darkness between two arms of the galaxy. Chayn approached the starless void with caution. In that incredible abyss four hundred light years across, he could sense another kind of life -- the star travelers. He could sense such small concentrations of explorers only where they stood out like specks of brightness, even the blank minds of those who slept in the frozen oblivion of suspended animation...

One of the star travelers in view piloted a starcraft similar to his own. Two others were primitive vehicles of metal driven by fusion or antimatter-propulsion units to velocities below that of the speed of light ... At first Chayn thought the pilot of the starcraft like his own would seek communication with him, but the entity was highly evolved and looked upon him as a curiosity. Chayn knew himself to be a primitive, more typical of the life forms frozen in their crude ships of metal...

...Chayn's fear intensified as he neared the abyss. Mindspiders lurked in the darkness, many species of them littering the void with invisible webs. Some dangled thin and scraggly. Others spread magnificently, a light year in diameter. Even in that moment, he felt the shock, the utterly brilliant flare of terror of alien minds encountering the web in the far distance. Particles rose to lethal intensities of radiation. Bodies died and the ship heated to incandescence. The mindspiders fed upon disembodied consciousness. Few of the primitives could perceive such danger lurking in the abyss...

...Ahead, he sensed an old, torn web. Even the mindspiders had their predators in their own realm. This one was gone, the web deteriorating.


Hammond's head spun with their tales of spaceman's life, tales of the vast glooms of cosmic clouds that ships rarely dared enter, of wrecks and castaways in the unexplored fringes of the galaxy, of strange races like the thinking rocks of Rigel and the fish-cities of Arcturus' watery worlds and the unearthly tree-wizards of dark Algol.

Edmond Hamilton, THE STAR OF LIFE (1947)

Aliens will not resemble anything we've seen. Considering that octopi, sea cucumbers, and oak trees are all very closely related to us, an alien visitor would look less like us than does a squid. Some fossils in the ancient Burgess shale are so alien that we can't determine which end of the creature is up, and yet these monsters evolved right here on Earth from the same origins as we did.

Johan Forsberg

Bizarre Alien Senses: Well, hell, who doesn’t have some sort of bizarre senses? Especially since it gets very tricky if you count the whole electromagnetic spectrum as one – i.e., “ultravision” and “infravision” are both strict subsets of “vision”. As, for that matter, is sensing gamma rays – and other similar elisions. It’s not like anyone gets to claim the canonical radiation range for “sight”, now is it?

But we’ve got people sensing everything from low infrared to high UV, with bioradio senses, with the ability to detect electromagnetic fields both static and changing, with the ability to feel the curvature of space-time (that would be those bionano vector-control effectors again), with echolocation and/or sonar, the ability to read plasmids by tasting them, and pretty much any other physical effect that you can measure somehow on the macroscale.

(The current eldrae alpha baseline clocks in at 24 recognized senses, by the way, counting the synthetic and transcendent ones, and that’s after considering smell and taste as one: photoception, audition, chemoception/olfaction, static mechanoception, dynamic mechanoception, thermoception, nociception, static electroception, dynamic electroception, proprioception, chronoception, farspeech, spatioception, secondary gestalt, secondary linear, mesh, metadata, worth, mnemonesis, nature, utility, entelechy, obligation, and autosentience.)


(ed note: This is about an outlandish theory in the Star Trek universe, explaining why all the alien species not only look similar but are close enough to interbreed. I'm looking at You, Sarek and Amanda. While the theory has major holes in it, the nice part is it neatly explains why the Star Trek universe does not suffer from the "Ain't Gonna Look LIke Mr. Spock" problem AND explains why it does not suffer from the "Apes or Angels" problem.

So while the theory won't work in the real world, it has the next best thing. In the Trek science fiction universe it has the sterling quality of being internally self-consistent.)

Science fiction has a problem: everyone looks the same. I know there are a few series that have aliens that look unimaginably different from human beings. But those are the exception, not the rule. Most major sci-fi series – Star Wars, Babylon 5, Mass Effect, Star Trek, Farscape, Stargate – have alien species that are hominid (note that the author is talking about TV and Movie media science fiction, not written or graphic novel science fiction. This is related to media budget constraints.).

Consider the above image. Of the twenty visible species, only five are visibly not hominid. That’s right, I count the prawn, xenomorph, predator, Cthulhu and A.L.F. as being hominid. I grant that it’s a bit of a stretch. A more conservative evaluation would be that only two of the twenty are truly hominid. The others, which we’ll call pseudo-hominids, still share the following with humans: bipedal locomotion; bilateral symmetry; a morphology of head, trunk, two arms, and two legs; upright posture; and forward-facing, stereoscopic eyes. I grant they don’t look precisely human, but the similarities are too striking to be swept into the nearest black hole.

Even the most strident supporter of parallel evolution would laugh in the face of anyone who claimed that the most intelligent species on nearly every planet in the universe just happened to evolve the exact same physiology. In series like Star Trek and Mass Effect, where interspecies relationships are possible, this cross-species compatibility is made even more preposterous. We all suspend our scientific disbelief to enjoy the story and the characters. No one believes for a second that the first species we meet in the cosmos is going to look just like us save for some pointy ears and a bowl haircut.

But what if many species in the universe do look like humans? How in Carl Sagan’s cosmos could we explain parallel evolution of that magnitude? Star Trek: The Next Generation, manages to give a scientifically plausible answer to the question of hominid and biologically compatible alien species in an episode entitled “The Chase.” Which lead me to develop the Hominid Panspermia Theory of Science Fiction Aliens.

My guess is that the writers of ST:TNG didn’t intend to plug a genre-spanning plot hole in “The Chase” given that it is, on its own, a pretty goofy episode. But, intentional or not, they gave me enough fuel to come up with a theory that would explain away a lot of sci-fi alien species similarity without resorting to a “that’s just how it is” answer. That said, I’m going to ignore the plot and jump right to the meaty conclusion. At the end of a string of clues, the crew of the Enterprise, along with a begrudging team of Klingons, Cardassians, and Romulans, activate a message from a past species. Star Trek lore is mixed as to what the nature of this species actually is, so I’m going to leverage some creative license and summarize it as I see fit. In short, an ancient hominid species sends a message to all future hominid species. That message is as follows:

Intelligent life evolved in the universe – once. The First Intelligent Species became spacefaring but, unlike the adventures depicted in most science fiction, they found an uninhabited universe. Non-intelligent species were too rudimentary or too far away to be detected. Thus, as both a memorial to themselves and to enliven the universe, the First Intelligent Species seeded the necessary DNA for the eventual evolution of intelligent life in the primordial oceans of every planet that could support life. The First Intelligent Species did not only design the DNA to evolve intelligently, but to parallel their own evolution. An application of the idea that “ontogeny recapitulates phylogeny” on the scale of life itself. Our corner of the universe thereby became the home of Vulcans, Romulans, Cardassians, Humans, Betazoids, and other hominid species which are all decedents of the First Intelligent Species. Therefore, in the eyes of the universe, the many hominid species are closely related despite their disparate home planets.

The Hominid Panspermia Theory, as I call it, explains a lot. Why are most hominid species variations only cosmetic and cultural? Because their genetics are designed to prevent significant deviation from the First Intelligent Species’ mold. How can species interbreed? They share a distant ancestor the way lions and tigers do. How are there so many species at nearly the same level of technological development? Life was seeded on many planets at approximately the same time. These nagging, infuriating questions that take me out of the story can be set aside because I have a plausible scientific explanation. The Hominid Panspermia Theory also titillates my need to believe we are neither the only nor the first intelligent species in the universe.

The Hominid Panspermia Theory also helps explain how there are so many bizarre life-forms throughout the universe without invoking near-deity races like the Q. One could argue that in the time that it took the seeded planets to evolve spacefaring hominid species, many other forms of life, intelligent and otherwise, evolved as well. The result is a near-universe that is largely populated by hominid alien species and a far-universe populated by inconceivably strange alien species. Furthermore, unintentional forward-contamination from the First Intelligent Species would have allowed unguided panspermia to trigger life in unexpected and unanticipated ways. Thus, many alien first contacts with Humanity were with hominid aliens. As exploration continued outward from the seeded galaxies, stranger and more truly alien species were encountered.

Finally, the Hominid Panspermia Theory still requires abiogenesis at some point and allows for multiple occurrences. That is, human beings could theoretically be the First Intelligent Species. Or among some of the only life in the universe. You don’t have to presume humanity is the product of some previous species to believe the Hominid Panspermia Theory is a scientific possibility, nor does Hominid Panspermia Theory fall prey to the “well who seeded the seeders?” reductio.

I apply the Hominid Panspermia Theory theory to pretty much every sci-fi series I encounter that involves multiple alien species that are hominid. For series in which the species are distinctly hominid but not mammalian, such as Mass Effect, I just modify the theory so that the First Intelligent Species was arbitrarily dumping seed genetic code into every splash of primordial soup they could find with no intent to reproduce themselves and/or that their explorations recklessly forward-contaminated the universe. Life with a very similar genetic base still gets scattered about, but less planning leads to much less parallel evolution.

Thanks to the Hominid Panspermia Theory of Science Fiction Aliens, my neurotic need to explain the similarity among spacefaring species is sated and I can go back to enjoying the photon blasts and spaceship explosions.

Follow Kyle on his personal blog, Pop Bioethics, and on facebook and twitter.

Image of diverse aliens via alien species wiki. Image of ancient hominid via memory alpha.

Winged Aliens

Aliens with wings is a popular trope. The dream of flying like a bird is probably been around since the dawn of recorded history.

But you can forget about angel-like humanoids with wings. Why? Physics.

You see, wings need to flap with enough power to lift the person. The power comes from muscles, lots of muscles. So much muscle in fact that in birds they need a special bone for the wing muscles to attach to. This is called the keel or carina bone. The muscles are what we call the meat of a chicken or turkey breast, and the keel is the breastbone.

I trust you can spy the problem. A humanoid with wings is going to have a deformed chest that looks like the prow of a huge boat. And female humanoids with wings will not have mammary glands. Not on their chest at any rate. That segment of the science fiction audience with the personalties of adolescent boys will be angry at the lack of cheescake fanservice. Once again the fans will be outraged at scientific accuracy. And they will vote with their wallet.

As you can see while it is not actually impossible to have humanoid winged creatures, they are going to be more towards the "noid" and less towards the "human" part of the spectrum. Which will put them right in the uncanny valley, inspiring revulsion instead of attraction. They ain't gonna look like angels.

A more minor problem is the fact that on a bird, the wings are basically its arms. On humans, arms are attached to the shoulder blades. Which means a winged humanoid with both arms and wings is going to need four shoulder blades, not the customary two. Which probably means the wings will be attached to the small of the back, not the shoulders.

Also the neck should be long and articulated so when flying (and basically in a prone position) it can bend the head so it can see where it is going, instead of being forced to look at the ground.


     They were near the door when a shadow fell over them. They whirled and stared upward. Yukiko's indrawn breath hissed from their receivers.
     Aloft hovered one of the great ornithoids. Sunlight struck through its outermost pinions, turning them golden. Otherwise it showed stormcloud-dark. Down the wind stooped a second.
     The sight was terrifying. Only later did the humans realize it was magnificent. Those wings spanned six meters. A muzzle full of sharp white fangs gaped before them. Two legs the length and well-nigh the thickness of a man's arms reached crooked talons between them. At their angles grew claws. In thrust after thrust, they hurled the creature at torpedo speed. Air whistled and thundered.
     Their guns leaped into the men's hands. "Don't shoot!" Yukiko's cry came as if from very far away.
     The splendid monster was almost upon them. Fire speared from Webner's weapon. At the same instant, the animal braked—a turning of quills, a crack and gust in their faces—and rushed back upward, two meters short of impact.
     Turekian's gaze stamped a picture on his brain which he would study over and over and over. The unknown was feathered, surely warm-blooded, but no bird. A keelbone like a ship's prow jutted beneath a strong neck. The head was blunt-nosed, lacked external ears; fantastically, Turekian saw that the predator mouth had lips. Tongue and palate were purple. Two big golden eyes stabbed at him, burned at him. A crest of black-tipped white plumage rose stiffly above, a control surface and protection for the backward-bulging skull. The fan-shaped tail bore the same colors. The body was mahogany, the naked legs and claws yellow.
     Webner's shot hit amidst the left-side quills. Smoke streamed after the flameburst. The creature uttered a high-pitched yell, lurched, and threshed in retreat. The damage wasn't permanent, had likely caused no pain, but now that wing was only half-useful.
     Turekian thus had time to see three slits in parallel on the body. He had time to think there must be three more on the other side. They weirdly resembled gills. As the wings lifted, he saw them drawn wide, a triple yawn; as the downstroke began, he glimpsed them being forced shut.

     "I shot at a dangerous animal. Didn't you see those talons, those fangs? And a buffet from a wing that big—ignoring the claws on it—could break your neck."
     Webner's gaze sought Yukiko's. He mainly addressed her: "Granted, they must be domesticated. I suspect they're used in the hunt, flown at game like hawks though working in packs like hounds. Conceivably the pair we encountered were, ah, sicced onto us from afar. But that they themselves are sophonts—out of the question."
     Her murmur was uneven. "How can you be sure?"
     Webner leaned back, bridged his fingers, and grew calmer while he lectured: "You realize the basic principle. All organisms make biological sense in their particular environments, or they become extinct. Reasoners are no exception—and are, furthermore, descended from nonreasoners which adapted to environments that had never been artificially modified.
     "On nonterrestroid worlds, they can be quite outré by our standards, since they developed under unearthly conditions. On an essentially terrestroid planet, evolution basically parallels our own because it must. True, you get considerable variation. Like, say, hexapodal vertebrates liberating the forelimbs to grow hands and becoming centauroids, as on Woden. That's because the ancestral chordates were hexapods. On this world, you can see for yourself the higher animals are four-limbed.
     "A brain capable of designing artifacts such as we observe here is useless without some equivalent of hands. Nature would never produce it. Therefore the inhabitants are bound to be bipeds, however different from us in detail. A foot which must double as a hand, and vice versa, would be too grossly inefficient in either function. Natural selection would weed out any mutants of that tendency, fast, long before intelligence could evolve.
     "What do those ornithoids have in the way of hands?" He smiled his tight little smile.
     "The claws on their wings?" Yukiko asked shyly.
     "'Fraid not," Turekian said. "I got a fair look. They can grasp, sort of, but aren't built for manipulation."
     "You saw how the fledgling uses them to cling to the parent," Webner stated. "Perhaps it climbs trees also. Earth has a bird with similar structures, the hoactzin. It loses them in adulthood. Here they may become extra weapons for the mature animal."
     "The feet." Turekian scowled. "Two opposable digits flanking three straight ones. Could serve as hands."
     "Then how does the creature get about on the ground?" Webner retorted. "Can't forge a tool in midair, you know, let alone dig ore and erect stone houses."
     He wagged a finger. "Another, more fundamental point," he went on. "Flyers are too limited in mass. True, the gravity's weaker than on Earth, but air pressure's lower. Thus admissible wing loadings are about the same. The biggest birds that ever lumbered into Terrestrial skies weighed some fifteen kilos. Nothing larger could get aloft. Metabolism simply can't supply the power required. We established aboard ship, from specimens, that local biochemistry is close kin to our type. Hence it is not possible for those ornithoids to outweigh a maximal vulture. They're big, yes, and formidable. Nevertheless, that size has to be mostly feathers, hollow bones—spidery, kitelike skeletons anchoring thin flesh.
     "Aram, you hefted several items today, such as a stone pot. Or consider one of the buckets, presumably used to bring water up from the river. What would you say the greatest weight is?"
     Turekian scratched in his beard. "Maybe twenty kilos," he answered reluctantly.
     "There! No flyer could lift that. It was always superstition about eagles stealing lambs or babies. They weren't able to. The ornithoids are similarly handicapped. Who'd make utensils he can't carry?"
     "M-m-m," Turekian growled rather than hummed. Webner pressed the attack:
     "The mass of any flyer on a terrestroid planet is insufficient to include a big enough brain for true intelligence. The purely animal functions require virtually all those cells. Birds have at least lightened their burden, permitting a little more brain, by changing jaws to beaks. So have those ornithoids you called 'watchfalcons.' The big fellows have not."
     He hesitated. "In fact," he said slowly, "I doubt if they can even be considered bright animals. They're likely stupid . . . and vicious. If we're set on again, we need have no compunctions about destroying them."

     Maybe his irritation with the pilot spoke for Webner: "How often must I explain there is no such risk, yet? Instead, here's a chance to learn. What happens next could give us invaluable clues to understanding the whole ethos. We stay." To Turekian: "Forget about that alleged metal. Could be protective collars, I suppose. But take the supercharger off your imagination."
     The other man froze where he stood.
     "Aram." Yukiko seized his arm. He stared beyond her. "What's wrong?"
     He shook himself. "Supercharger," he mumbled. "By God, yes."
     Abruptly, in a bellow: "We're leaving! This second! They are the dwellers, and they've gathered the whole countryside against us!"

     When you know what to expect, a little, you can lay plans. We next sought the folk of Ythri, as the planet is called by its most advanced culture, a thousand kilometers from the triumph which surely prevailed in the mountains. Approached with patience, caution, and symbolisms appropriate to their psyches, they welcomed us rapturously. Before we left, they'd thought of sufficient inducements to trade that I'm sure they'll have spacecraft of their own in a few generations.
     Still, they are as fundamentally territorial as man is fundamentally sexual, and we'd better bear that in mind.
     The reason lies in their evolution. It does for every drive in every animal everywhere. The Ythrian is carnivorous, aside from various sweet fruits. Carnivores require larger regions per individual than herbivores or omnivores do, in spite of the fact that meat has more calories per kilo than most vegetable matter. Consider how each antelope needs a certain amount of space, and how many antelope are needed to maintain a pride of lions. Xenologists have written thousands of papers on the correlations between diet and genotypical personality in sophonts.
     I have my doubts about the value of those papers. At least, they missed the possibility of a race like the Ythrians, whose extreme territoriality and individualism—with the consequences to governments, mores, arts, faiths, and souls—come from the extreme appetite of the body.
     They mass as high as thirty kilos; yet they can lift an equal weight into the air or, unhampered, fly like demons. Hence they maintain civilization without the need to crowd together in cities. Their townspeople are mostly wing-clipped criminals and slaves. Today their wiser heads hope robots will end the need for that.
     Hands? The original talons, modified for manipulating. Feet? Those claws on the wings, a juvenile feature which persisted and developed, just as man's large head and sparse hair derive from the juvenile or fetal ape. The forepart of the wing skeleton consists of humerus, radius, and ulnar, much as in true birds. These lock together in flight. Aground, when the wing is folded downward, they produce a "knee" joint. Bones grow from their base to make the claw-foot. Three fused digits, immensely lengthened, sweep backward to be the alatan which braces the rest of that tremendous wing and can, when desired, give additional support on the surface. To rise, the Ythrians usually do a handstand during the initial upstroke. It takes less than a second.
     Oh, yes, they are slow and awkward afoot. They manage, though. Big and beweaponed, instantly ready to mount the wind, they need fear no beast of prey.
     You ask where the power comes from to swing this hugeness through the sky. The oxidation of food, what else? Hence the demand of each household for a great hunting or ranching demesne. The limiting factor is the oxygen supply. A molecule in the blood can carry more than hemoglobin does, but the gas must be furnished. Turekian first realized how that happens. The Ythrian has lungs, a passive system resembling ours. In addition he has his supercharger, evolved from the gills of an amphibianlike ancestor. Worked in bellows fashion by the flight muscles, connecting directly with the bloodstream, those air-intake organs let him burn his fuel as fast as necessary.

From WINGS OF VICTORY by Poul Anderson (1972)

A shape blotted out the sun. They bounded to their feet.

That which was descending passed the disc, and light blazed off the gold-bronze pinions of a six-meter wingspan. Air whistled and thundered. Fraina cried out. Mikkal poised his javelin. "Don't!" Ivar shouted. "Ya-lawa! He's Ythrian!"

"O-o-oh, ye-e-es," Mikkal said softly. He lowered the spear though he kept it ready. Fraina gripped Ivar's arm and leaned hard against him.

The being landed. Ivar had met Ythrians before, at the University and elsewhere. But his astonishment at this arrival was such that he gaped as if he were seeing one for the first time.

Grounded, the newcomer used those tremendous wings, folded downward, for legs, claws at the bend of them spreading out to serve as feet, the long rear-directed bones lending extra support when at rest. That brought his height to some 135 centimeters, mid-breast on Ivar, farther up on the tinerans; for his mass was a good 25 kilos. Beneath a prowlike keelbone were lean yellow-skinned arms whose hands, evolved from talons, each bore three sharp-clawed fingers flanked by two thumbs, and a dewclaw on the inner wrist. Above were a strong neck and a large head proudly held. The skull bulged backward to contain the brain, for there was scant brow, the face curving down in a ridged muzzle to a mouth whose sensitive lips contrasted curiously with the carnivore fangs behind. A stiff feather-crest rose over head and neck, white edged with black like the fan-shaped tail. Otherwise, apart from feet, arms, and huge eyes which burned gold and never seemed to waver or blink, the body was covered with plumage of lustrous brown.

He wore an apron whose pockets, loops, and straps supported what little equipment he needed. Knife, canteen, and pistol were the only conspicuous items. He could live off the country better than any human…

…The Anglic which replied was sufficiently fluent that one couldn't be sure how much of the humming accent and sibilant overtones were due to Ythrian vocal organs, how much simply to this being an offplanet dialect the speaker had learned. "Thanks, greetings, and fair winds wished for you. I hight Erannath, of the Stormgate choth upon Avalon. Let me quench thirst and we can talk if you desire."

As awkward on the ground as he was graceful aloft, he stumped to the pool. When he bent over to drink, Ivar glimpsed the gill-like antlibranchs, three on either side of his body. They were closed now, but in flight the muscles would work them like bellows, forcing extra oxygen into the bloodstream to power the lifting of the great weight. That meant high fuel consumption too, he remembered. No wonder Erannath traveled alone, if he had no vehicle. This land couldn't support two of him inside a practical radius of operations…

…Mikkal settled himself back in the shade where he had been. "Might I ask what brings you, stranger?"

"Circumstances," Erannath replied. His race tended to be curt. A large part of their own communication lay in nuances indicated by the play of marvelously controllable quills

…Expressions they could not read rippled across the feathers…

…"A sophont," Mikkal said redundantly. He proceeded: "More bright and tough than most. Maybe more than us. Could be we're stronger, we humans, simply because we outnumber them, and that simply because of having gotten the jump on them in space travel and, hm, needing less room per person to live in."

"A bird?"

"No," Ivar told her. "They're feathered, yes, warm-blooded, two sexes. However, you noticed he doesn't have a beak, and females give live birth. No lactation—no milk, I mean; the lips're for getting the blood out of prey."

From THE DAY OF THEIR RETURN by Poul Anderson (1974)

A canned lecture was barely under way. A human xenologist stood in the screen and intoned:

"Warm-blooded, feathered, and flying, the Ythrians are not birds; they bring their young forth viviparously after a gestation of four and a half months; they do not have beaks, but lips and teeth. Nor are they mammals; they grow no hair and secrete no milk; those lips have developed for parents to feed infants by regurgitation. And while the antlibranchs might suggest fish gills, they are not meant for water but for—"…

…He reactivated the screen. It showed an Ythrian walking on the feet that grew from his wings: a comparatively slow, jerky gait, no good for real distances. The being stopped, lowered hands to ground, and stood on them. He lifted his wings, and suddenly he was splendid.

Beneath, on either side, were slits in column. As the wings rose, the feathery operculum-like flaps which protected them were drawn back. The slits widened until, at full extension, they gaped like purple mouths. The view became a closeup. Thin-skinned tissues, intricately wrinkled, lay behind a curtain of cilia which must be for screening out dust.

When the wings lowered, the slits were forced shut again, bellows fashion. The lecturer's voice said: "This is what allows so heavy a body, under Terra-type weight and gas density, to fly. Ythrians attain more than twice the mass of the largest possible airborne creature on similar planets elsewhere. The antlibranchs, pumped by the wing-strokes, take in oxygen under pressure to feed it directly to the bloodstream. Thus they supplement lungs which themselves more or less resemble those of ordinary land animals. The Ythrian acquires the power needed to get aloft and, indeed, fly with rapidity and grace."

The view drew back. The creature in the holograph flapped strongly and rocketed upward.

"Of course," the dry voice said, "this energy must come from a correspondingly accelerated metabolism. Unless prevented from flying, the Ythrian is a voracious eater. Aside from certain sweet fruits, he is strictly carnivorous. His appetite has doubtless reinforced the usual carnivore tendency to live in small, well-separated groups, each occupying a wide territory which instinct makes it defend against all intruders.

"In fact, the Ythrian can best be understood in terms of what we know or conjecture about the evolution of his race."…

…"We believe that homeothermic—roughly speaking, warm-blooded—life on Ythri did not come from a reptilian or reptiloid form, but directly from an amphibian, conceivably even from something corresponding to a lungfish. At any rate, it retained a kind of gill. Those species which were most successful on land eventually lost this feature. More primitive animals kept it. Among these was that small, probably swamp-dwelling thing which became the ancestor of the sophont. Taking to the treetops, it may have developed a membrane on which to glide from bough to bough. This finally turned into a wing. Meanwhile the gills were modified for aerial use, into superchargers."

"As usual," Wa Chaou observed. "The failures at one stage beget the successes of the next."

"Of course, the Ythrian can soar and even hover," the speaker said, "but it is the tremendous wing area which makes this possible, and the antlibranchs are what make it possible to operate those wings.

"Otherwise the pre-Ythrian must have appeared fairly similar to Terran birds." Pictures of various hypothetical extinct creatures went by. "It developed an analogous water-hoarding system—no separate urination—which saved weight as well as compensating for evaporative losses from the antlibranchs. It likewise developed light bones, though these are more intricate than avian bones, built of a marvelously strong two-phase material whose organic component is not collagen but a substance carrying out the functions of Terra-mammalian marrow. The animal did not, however, further ease its burdens by trading teeth for a beak. Many Ythrian ornithoids have done so, for example the uhoth, hawklike in appearance, doglike in service. But the pre-sophont remained an unspecialized dweller in wet jungles.

"The fact that the young were born tiny and helpless—since the female could not fly long distances while carrying a heavy fetus—is probably responsible for the retention and elaboration of the digits on the wings. The cub could cling to either parent in turn while these cruised after food; before it was able to fly, it could save itself from enemies by clambering up a tree. Meanwhile the feet acquired more and more ability to seize prey and manipulate objects.

"Incidentally, the short gestation period does not mean that the Ythrian is born with a poorly developed nervous system. The rapid metabolism of flight affects the rate of fetal cell division. This process concentrates on laying down a body pattern rather than on increasing the size. Nevertheless, an infant Ythrian needs more care, and more food, than an infant human. The parents must cooperate in providing this as well as in carrying their young about. Here we may have the root cause of the sexual equality or near equality found in all Ythrian cultures.

"Likewise, a rapid succession of infants would be impossible to keep alive under primitive conditions. This may be a reason why the female only ovulates at intervals of a year—Ythri's is about half of Terra's—and not for about two years after giving birth. Sexuality does not come overtly into play except at these times. Then it is almost uncontrollably strong in male and female alike. This may well have given the territorial instinct a cultural reinforcement after intelligence evolved. Parents wish to keep their nubile daughters isolated from chance-met males while in heat. Furthermore, husband and wife do not wish to waste a rich, rare experience on any outsider.

"The sexual cycle is not totally rigid. In particular, grief often brings on estrus. Doubtless this was originally a provision of nature for rapid replacement of losses. It seems to have brought about a partial fusion of Eros and Thanatos (sex+death motif. In Freudian psychology these are opposed, apparently in Ythrian psychology they are fused) in the Ythrian psyche which makes much of the race's art, and doubtless thought, incomprehensible to man. An occasional female can ovulate at will, though this is considered an abnormality; in olden days she would be killed, now she is generally shunned, out of dread of her power. A favorite villain in Ythrian story is the male who, by hypnosis or otherwise, can induce the state. Of course, the most important manifestation of a degree of flexibility is the fact that Ythrians have successfully adapted their reproductive pattern, like everything else, to a variety of colonized planets."…

…"But to return to evolution," the lecturer was saying. "It seems that a major part of Ythri underwent something like the great Pliocene drought in Terra's Africa. The ornithoids were forced out of dwindling forests onto growing savannahs. There they evolved from carrion eaters to big-game hunters in a manner analogous to pre-man. The original feet became hands, which eventually started making tools. To support the body and provide locomotion on the ground, the original elbow claws turned into feet, the wings that bore them became convertible to legs of a sort.

"Still, the intelligent Ythrian remained a pure carnivore, and one which was awkward on land. Typically, primitive hunters struck from above, with spears, arrows, axes. Thus only a few were needed to bring down the largest beasts. There was no necessity to cooperate in digging pits for elephants or standing shoulder to shoulder against a charging lion. Society remained divided into families or clans, which seldom fought wars but which, on the other hand, did not have much contact of any sort.

"The revolution which ended the Stone Age did not involve agriculture from the beginning, as in the case of man. It came from the systematic herding, at last the domestication, of big ground animals like the maukh, smaller ones like the long-haired mayaw. This stimulated the invention of skids, wheels, and the like, enabling the Ythrian to get about more readily on the surface. Agriculture was invented as an ancillary to ranching, an efficient means of providing fodder. The food surplus allowed leisure for travel, trade, and widespread cultural intercourse. Hence larger, complex social units arose.

"They cannot be called civilizations in a strict sense, because Ythri has never known true cities. The mobility of being winged left no necessity for crowding together in order to maintain close relationships. Granted, sedentary centers did appear—for mining, metallurgy, and other industry; for trade and religion; for defense in case the group was defeated by another in aerial battle. But these have always been small and their populations mostly floating. Apart from their barons and garrisons, their permanent inhabitants were formerly, for the main part, wing-clipped slaves—today, automated machines. Clipping was an easy method of making a person controllable; yet since the feathers could grow back, the common practice of promising manumission after a certain period of diligent service tended to make prisoners docile. Hence slavery became so basic to pre-industrial Ythrian society that to this day it has not entirely disappeared."

From THE PEOPLE OF THE WIND by Poul Anderson (1973)

Between these investigations, he caught momentary glimpses of the city, and realized how difficult—and dangerous—it would be for him to travel around in it. Streets were practically non-existent, and there seemed to be no surface transport. This was the home of creatures who could fly, and who had no fear of gravity. It was nothing to come without warning upon a vertiginous drop of several hundred metres, or to find that the only entrance into a room was an opening high up in the wall. In a hundred ways, Jan began to realize that the psychology of a race with wings must be fundamentally different from that of earthbound creatures.

It was strange to see the Overlords flying like great birds among the towers of their city, their pinions moving with slow, powerful beats. And there was a scientific problem here.

This was a large planet—larger than Earth. Yet its gravity was low, and Jan wondered why it had so dense an atmosphere. He questioned Vindarten on this, and discovered, as he had half expected, that this was not the original planet of the Overlords. They had evolved on a much smaller world and then conquered this one, changing not only its atmosphere but even its gravity.

The architecture of the Overlords was bleakly functional; Jan saw no ornaments, nothing that did not serve a purpose, even though that purpose was often beyond his understanding. If a man from mediaval times could have seen this red-lit city, and the beings moving through it, he would certainly have believed himself in Hell. Even Jan, for all his curiosity and scientific detachment, sometimes found himself on the verge of unreasoning terror. The absence of a single familiar reference point can be utterly unnerving even to the coolest and clearest minds.

From CHILDHOOD'S END by Arthur C. Clarke (1953)

The city marched up out of the crimson haze, ever more awful, the bulk of it swelling to blot out half the red sky with gleaming black metal, the titanic machines that crowned it frowning down with the threat of unknown death. A palpable atmosphere of dread and horror hung over that unearthly metropolis, a sense of evil power and hostile strength, of ancient wisdom and monstrous science, for it had endured since the Earth was new.

The four ragged creatures on the raft gazed on those marching walls with a hopeless horror. Their minds sank prostrate with realization that unless their puny efforts could free the girl imprisoned there, the makers of this pile of black metal had also shaped the doom of mankind.

The city seemed dead at first, a somber necropolis, too old for any life. But presently they saw movement along the walls. A black spider-ship spread titanic vanes, and rose silently from a high platform to vanish in the red sky eastward.

"We must cover ourselves," said Jay Kalam. "They might be watching."

He had them screen the raft with broken branches, to look like driftwood. And the river carried them on toward the mighty wall. They were gazing upward in awe­struck silence when Hal Samdu cried: "See them moving! Above the wall!"

And the others could presently distinguish the creatures that moved—still tiny with many miles of distance—the ancient masters of this aged planet!

John Star had glimpsed one of the Medusas on Mars, that thing in the gondola swung from the black flier, whose weapon had struck him down. A swollen, greenish surface, wetly heaving; a huge, ovoid eye, luminous and purple. But these were the first he had fully seen.

They drifted above the wall like little green balloons. Their eyes were tiny dark points in their bulging sides—each had four eyes, spaced at equal distances about its circumference. From the lower, circular edge, like the ropes that would have suspended the car of a balloon, hung a fringe of black and whiplike tentacles.

John Star could see the superficial likeness, the dome shape, the fringing tentacles, that had earned them the name Medusae.

In the distance they did not look impressive. There was about them a certain grotesq«eness, a slow awkwardness. They didn't look intelligent. Yet in the way they moved, floating apparently at will above the black wall, was a power and mystery that made for respect. And in the knowledge that they were the builders of this black metropolis was room for awe and terror.

Scrambling over the immense bearing of the shaft, they found a little circular hole in the roof of the tank—it must have been left for attention to the bearings. They climbed through it, Giles Habibula sticking until the others pulled him out, and so at last, on top of the reservoir, they were fairly within the city.

They stood on the lower edge of a conical black metal roof, a dizzy drop of two thousand feet below them, and the slope too steep for comfort.

Standing there on that perilous brink, John Star felt a staggering impact of nightmare strangeness and bewildering confusion. Buildings, towers, stacks, tanks, machines, all loomed up about him, a black fantastic forest against the lurid sky, appallingly colossal. The tallest structures reached, he soberly estimated, two miles high.

If this black metropolis of the monstrous Medusae had order or plan, he did not grasp it. The black wall had seemed to enclose a regular polygon. But within all was strange, astounding, incomprehensible, to the point of stunning dismay.

There were no streets, but merely yawning cavernous abysms between mountainous black structures. The Medusae had no need of streets. They didn't walk, they floated! Doors opened upon sheer space, at any level from the surface to ten thousand feet.

The stupendous ebon buildings had no regular height or plan, some were square, some cylindrical or domed, some terraced, some—like the reservoir upon which they stood—sheerly vertical. All among them were bewildering machines of unguessable function—save that a few were apparently aerial or interstellar fliers, moored on landing stages—but all black, ugly, colossal; dread instrumentalities of a science older than the life of Earth.

From THE LEGION OF SPACE by Jack Williamson (1934)

Wheeled Aliens

Aliens with wheels are a difficult concept. There are problems with making worthwhile wheels using biology, and even more problems finding a plausible sequence where such a thing could be created by evolution.

In the real world the closest thing to an animal with wheels is the spinning flagellum of certain microscopic bacteria.

Wheeled aliens make an appearance in the satirical "Retief" story Retief's War, the g'Kek of Brightness Reef (looking like "a squid in a wheelchair" that suffer from arthritic axles when elderly), and in the Polarians of the Cluster novels (technically the Polarians do not use wheels, they roll around on large spheres).

A milder version is rolling aliens. They are generally shaped like a sphere or a disc harrow, the entire alien rolls instead of just part of the alien. There is a spherical alien in Arena and Tuf Voyaging, a cylindrical alien in Stadium Beyond the Stars, a disembodied wheel in A Star Called Cyrene, and disc harrow aliens called the Slash of the Cluster novels

     "Ah, a bit more than nothing," Turekian said. "A tiny bit. I just wish you were less convinced your science has the last word on all the possibilities. Things I've seen—"
     "I've heard your song before," Webner scoffed. "In a jungle on some exotic world you met animals with wheels."
     "Never said that. Hm-m-m … make a good yarn, wouldn't it?"
     "No. Because it's an absurdity. Simply ask yourself how nourishment would pass from the axle bone to the cells of the disc. In like manner—"

From WINGS OF VICTORY by Poul Anderson (1972)

     The boy slowed. An alien was squatting in the path. A Polarian.
     They drew up before the strange creature. It was a teardrop-shaped thing with a massive spherical wheel on the bottom and a limber tentacle or trunk at the top. When that tentacle reached straight up, it would be as high as Flint, and the body's mass was similar to his. But the Polarian had no eyes, ears, nose, or other appendages.
     The Shaman claimed they were similar to human beings because they liked similar gravity, breathed the same air—though they had no lungs—and had a similar body chemistry. Their brains were as massive and versatile as man's, and they were normally inoffensive. But they looked quite different, and such details as how they ate, reproduced, and eliminated were mysteries.
     But Flint had promised himself to treat the next alien he met with special courtesy. He and the boy halted politely. "Greetings, explorer," Flint said.
     The creature's body glowed with simulated pleasure. It put its stalk down to the ground. In this position it looked more than ever like a dinosaur dropping. Flint stifled a laugh.
     A little ball in the tip of the trunk spun rapidly. "Greetings, native," the ground said.
     Flint was not surprised. He had been familiar with the mechanism from infancy. The little ball vibrated against the ground—or any available surface—to produce intelligible sounds. As the Polarian had no mouth, it could not talk as humans did.

     Now he had done it! He had never suspected the creature would accept! Well, it couldn't be helped. "It is an emergency. We shall be hurrying."
     "I shall not impede you," the Polarian replied.
     Fat chance! But Flint smiled graciously. He gestured to the boy. "Show the way."
     The runner was off, sensing a race. This was firm, level ground, excellent for making time. Flint followed, stretching his legs.
     But Tsopi followed right along, rolling smoothly on her ball-wheel. She was at no disadvantage. Polarians could move rapidly and effortlessly when the terrain was right; their wheel was efficient. Flint had not before appreciated how efficient. On occasion he had wondered how the aliens kept themselves upright. The Shaman had remarked that a man on a unicycle performed the same feat. But there were no unicycles on Outworld.

     How did no-handed creatures manage to build such edifices? Again his memory provided the answer: Polarians were adept at circular manipulation of objects and concepts. They did not carry building blocks into place, they rolled building spheres into place. Where men laid bricks, Polarians rolled stones. Where men hammered nails, Polarians squeezed glue. The end result was rather similar, as though civilization shaped itself into certain configurations regardless of the sapient species invoking it. Here there were no square skyscrapers, but domed dunes serving the same purpose.
     They passed down a smooth ramp, where on Earth there would have been stairs. Of course; ramps were better for wheels, stairs for legs. Ramps were everywhere, contributing to the fluidity of the architectural design.
     They had to roll single file, for efficient progress through the throng. Tsopi's trail just ahead of him was sweet; she had a tantalizingly feminine taste.
     Taste? Flint concentrated, and it came: Polarians laid down taste trails with their wheels, much as humans laid down scent. No, more than that: These were actual, conscious signatures of passage, like the trails of Earthly snails. He remembered the first snail he had seen, beside the huge water of the ocean inlet, under the odd blue sky of Earth. Today he didn't even notice the color of the sky of a given planet; sky was sky color, right for its world. But this taste; every Polarian was really a super-bloodhound, sniffing out every other, all the time. It was the natural way. In fact, it was already difficult to imagine how it could be otherwise.

From CLUSTER by Piers Anthony (1977)

     The monster charged, when Herald was off-balanced from his effort. And suddenly he realized another point of affinity: the monster was like a Slash, his own kind! A Slash was a tubular creature with disks around its girth that it used for slicing out pathways, cutting up food, and dismembering enemies. It also had laser lenses for longer-range action. In his natural body, Herald could have met this creature on even terms, perhaps more than even terms. A Slash was smaller, but the lasers could score with devastating effect before the disks struck. But this Solarian host was a poor excuse for a combat creature.

From KIRLIAN QUEST by Piers Anthony (1978)

Tentacle Aliens

A tentacle is a "flexible, mobile, elongated organ present in some species of animals, most of them invertebrates" (technical term cephalopod limb). Since they are uncommon in familiar earthly animals, they became a popular characteristic on unearthly science fiction aliens.

This old trope dates back to prehistory, when the first man was freaked out when they discovered the octopus. In science fiction it dates back to at least 1898 with H. G. Well's War of the Worlds.

It lingers on in popular media. TV Tropes notes how be-tentacled creatures commonly use their tentacles in unique ways for combat (such as the old tentacle rope trick, that never gets old). As are tropes about the unexpected vulnerabilities of tentacles, such as the "knotty tentacle" trope.

According to Dr. Hans P. Moravec of the Carnegie-Mellon University, most land animals on Terra are "fractal."

Once upon a time animals were shaped like sticks (worms), and couldn't manipulate or even locomote very well. Then the sticks grew smaller sticks (arms and legs) and locomotion was much improved, and manipulation a little. Then the smaller sticks grew yet smaller sticks (fingers), and hands were invented, and manipulation got better.

Generalize the concept. I visualize a robot that looks like a tree, with a big stem, repeatedly branching into thinner, shorter and more numerous twigs, finally ending up in jillions of near-microscopic cilia. Each intermediate branch would have three or four degrees of freedom, an azimuth-elevation mount at its base, and an axial rotation joint at the top, where it connects to the next level of smaller twigs, and possibly also a length altering telescoping joint. To a large extent fewer degrees of freedom per level can be traded off for more levels. Each branch would also incorporate force sensing. Though each branch would be a rigid "mechanical" object, the overall structure would have an "organic" flexibility because of the great multitude of degrees of freedom.

So species that use tentacles figured out how to turn an arm or leg into a manipulative organ without needing to grow fingers.

Mechanically a tentacle is a "Muscular Hydrostat", consisting mainly of muscles with no skeletal support (an arm with no bones). It relies on the fact that water is effectively incompressible at physiological pressures, and the fact that muscles are mostly composed of water (i.e., it is hydraulic machinery). If the structure used pockets of water in separate compartments instead of watery muscles it would be a hydrostatic skeleton, but I digress.

Common examples of muscular hydrostats include octopus tentacles, elephant trunks, the entire body of a worm, and the human tongue.


Tentacles are mostly solid muscle.

Just like in animals with skeletons or exoskeletons, tentacle muscles can only provide force by contracting, expanding doesn't do diddly squat. So just like in conventional animal limbs all tentacle muscles are arranged in antagonistic pairs. If one muscle pulls to the left it is paired with an antagonist muscle that pulls to the right. As one muscle in the pair contracts the other relaxes.

The muscle fibers are oriented in three different directions:

Tentacle Muscles
Perpendicular to the long axis
LongitudinalParallel to the long axis
HelicalWrapped obliquely around the long axis

The closer the longitudinal muscles are located to the tentacle skin, the more elaborate bending movements are possible. Octopus arms, elephant snouts, and other manipulators all have this arrangement. You only see centrally located longitudinal muscles in limbs that just protrude in and out, like snake and anteater tongues.

Muscles perpendicular to the long axis can be in a circular, radial, or transverse pattern. Radial and transverse muscles are anchored to the external connective tissue by threads called "trabeculae" which penetrate the longitudinal and helical muscles that are in the way. Transverse muscles are in sheets that alternate between horizontal and vertical (the "down" direction is towards the side of the tentacle with suckers, technical term is "oral side").

Perpendicular Muscles
CircularRings around long axissquid tentacle
mammal tongue
RadialRadiating from center in a disk shapechambered nautilus tentacle
elephant trunk
TransverseAlternating between horizontal and verticaloctopus tentacle
human tongue

Helical or oblique fibers wrap around the long axis like candy cane stripes. They are usually in two or more layers of opposite chirality (left hand/right hand). The external and medial helixes are at an angle of 50 to 60° to the long axis, internal are at 40 to 50°. The role of the internal helical muscles is unclear.


Like all hydraulic machinery, the operating principle is the incompressibility of water, that is, if you push water into one end of a tube water will come spraying out of the other end. The important point is "incompressible" means the volume of water always stays the same. If you reduce a volume of water's dimension in one direction it will have to expand in at least one other dimension.

So, for instance, if the muscles squeeze the tentacle to reduce its diameter (height and width dimensions), the tentacle will elongate along the long axis (length dimension). Because the volume of tentacle has to always stay the same.

Elongation and Shortening

This is when the tentacle grows or shrinks along the long axis. Like when you stick out your tongue.

When the perpendicular (or helical) muscles contract (decreasing the tentacle's diameter) it elongates along the long axis (increasing the length). When the longitudinal muscles contract the tentacle shortens along the long axis (shortening the length) while simultaneously expanding hight and width (increasing the diameter).

So in this case the perpendicular muscles are operating antagonistic to the longitudinal muscles.

Some frogs can elongate their tongues up to 180% of its resting length. Due to hydraulics, the more the tongue is capable of elongating, the less force it can hit an object with.


Bending the tentacle is done by using the longitudinal muscle to reduce the length of the tentacle while other muscles act to prevent the length reduction on one side of the tentacle. This causes a bend on the opposite side of the tentacle.

Octopi apparently contract all of the longitudinal muscles while strategically using the perpendicular muscles to maintain a constant diameter at specific points.

Some tentacle robot limb designs have no perpendicular muscles. Instead they expand (using inflatable tubes instead of muscles) only some of the longitudinal muscle. The robot tentacle bends on the side of the uninflated tubes.


This is twisting the tentacle on the long axis, like it was a drill bit. It is done by contracting one of the two sets of hexlical muscles.


It is possible to make the tentacle rigid. The details are elusive but I would presume it can be done by contracting all the muscles at once.



Moving the tentacle to increase the distance between tentacle tip and tentacle base. The two basic types of reaches are:

Uncurling Reach: where the tentacle starts out rolled up in a spiral and rolls out.

Elongating Reach: where the arm starts out straight and grows longer.


Moving the tentacle to decrease the distance between tentacle tip and tentacle base. The three basic types of pulls are:

Continuum Curling Pull: where the arm rolls into a spiral.

Straight-arm Shortening: where the arm is straight and grows shorter.

Bending Pull: where the arm creates an elbow like bending point.


These are behaviors that are a lateral combination of sharp bends, sweeps, wraps, lifts, torsional rotations, drop, etc.

Mechanical Tentacles

Robot researchers have been experimenting with making tentacle-like robot arms and bodies. These use the same muscular geometry as tentacles but usually without the hydraulics. NASA had looked into this concept under the title "serpentuator".

Some use a set of contracting longitudinal and transverse muscles. Other just use pneumatically expanding arrays of longitudinal muscles and no transverse muscles.


Penn State Research Team Develops OctArm Soft Robot Manipulator

Recent interest in expanding the capabilities of robot manipulators has led to significant research in continuum manipulators. The idea behind these robots is to replace the serial chain of rigid links in conventional manipulators with smooth, continuous, and flexible links. Unlike traditional rigid-linked robots, continuum robot manipulators can conform to their surroundings, navigate through unstructured environments, and grasp objects using whole arm manipulation. Soft continuum manipulators can be designed with a large number of actuators to provide hyper-redundant operation that enables dexterous movement and manipulation with robust performance. This improved functionality leads to many applications in industrial, space, and defense robotics.

Previous continuum robots used cable-tendon and pressurized tube actuators with limited performance. Cable-tendons must be tensioned or the cables become snarled or fall off drive pulleys, limiting the robot speed. Pneumatic bellows have low shear stiffness, limiting load capacity. Thus, there exists a need for a highly dexterous, fast, and strong soft robot manipulators.

Dr. Christopher Rahn, Professor of Mechanical Engineering at Penn State along with his students Dustin Dienno and Mike Pritts, and assisted by Dr. Michael Grissom developed the OctArm manipulator using air muscle actuators. These actuators are constructed by covering latex tubing with a double helical weave, plastic mesh sheath to provide the large strength to weight ratio and strain required for soft robot manipulators.

OctArm is divided into three sections. Each section is capable of two axis bending and extension which allows nine degrees of freedom. The manipulators are actuated with pressurized air (Maximum pressure = 120 psi) pressure control valves and polyurethane connective tubing.

The air muscle actuators are optimized to provide the desired wrap angles and workspace. The distal section of each OctArm is designed to have a minimum wrap diameter of 10 cm. The length of each section is chosen so that the manipulator can provide a range of 360 degrees wrap angles to accommodate a wide range of objects sizes. To provide the desired dexterity, OctArm is constructed with high strain extensor actuators extend up to 80%.

To provide two-axis bending and extension, three control channels are used. selected. Six actuators are used in sections one and two and three actuators are used in section three. The six sections have two actuators for each control channel and results in actuators located at a larger radius, corresponding to higher stiffness and load capacity. Secondary layers of mesh sleeving are used to group individual actuators in control channels. Three closely-spaced actuators provide high curvature for the distal sections. The third, visible, mesh layer or fabric skin is designed to protect the manipulator from abrasion and wear.

For the field tests, OctArm was mounted to the second link of a Foster-Miller TALON platform. The control valves and two air tanks provided nine channels of controlled pneumatic pressure. Clemson University provided the control electronics and operation interface for these tests. The OctArm /Talon system underwent extensive field trials in the spring of 2005 at the Southwest Research Institute (SwRI) in San Antonio, Texas.

original article has links to some PDF reports)

From the Cybernetic Zoo


In the novel, the Empire wants to negotiate a mining treaty with the Martians. Who have tentacles, by the way. The problem is that the key Martian ambassador is partial to a cocktail called a "Three Planets". Only a Martian bartender can make a proper Three Planets, something to do with using tentacles. Our Heroes are contracted to make a robot bartender capable of mixing a proper Three Planets. This is a problem, since if you add three drops of vuzd liquor to the drink it is incipid, but if you add four drops it tastes nasty.

Our Heroes enlist the aid of a Martian Bartender named Guzub.)

"I got one of those new electronic cameras — you know, one thousand exposures per second… So we took pictures of Guzub making a Three Planets, and I could construct this one to do it exactly right down to the thousandth of a second. The proper proportion of vuzd, in case you're interested, works out to three-point-six-five-four-seven-eight-two-three drops. It's done with a flip of the third joint of the tentacle on the down beat.

"It didn't seem right to use Guzub to make a robot that would compete with him and probably drive him out of business, so we've promised him a generous pension from the royalties on usuform barkeeps."

I took one sip and said, "Where's Guzub?... this Three Planets, it's perfect..."

Quinby opened a door. There sat the first original Quinby usuform — no remake of a Robinc model, but a brand-new creation. Quinby said, "Three Planets," and he went into action. He had tentacles, and the motions were exactly like Guzub's except that he himself was the shaker. He poured the liquids into his maw, joggled about, and then poured them out of a hollow hoselike tentacle.

Usuform" means a robot that is designed along functional lines, instead of stupidly forcing the design to look like a mental man)

From Q.U.R. by Anthony Boucher (1943)

Hive Entity

A "hive" intelligence would resemble an intelligent ant-hill, where each ant would be but a cell in the hill's "body". Individual ants may die, but the hill goes on. Examples include the "Boaty Bits" from FARTHEST STAR by Jack Williamson and Frederik Pohl, the "Godtalkers" from THE DRAGON NEVER SLEEPS by Glen Cook, the "Tinker Composite" from THE MIND POOL by Charles Sheffield, the "Mantis" from GREAT SKY RIVER by Gregory Benford, and the Martians from LAST AND FIRST MEN by Olaf Stapedon. If the alien is composed of a hive of several species, it is some times called an "anthology intelligence." Go to The Tough Guide to the Known Galaxy and read the entry "HIVE ENTITY".

A good example of a hive intelligence was in Olaf Stapedon's classic Star Maker. The "cells" composing an individual were free-flying birds linked telepathically. Birds might be born or die, but the flock-individual lived on. A more modest version were the "Tines" in Vernor Vinge's A Fire Upon The Deep. One might even consider an anthill to be a hive organism, an individual who's cells are ants.

HIVE ENTITY. A type of REALLY ALIEN intelligent species - one of the most Really Alien of all - organized along lines rather like the social insects. In a Hive Entity, individuals members of the community count for nothing, and indeed most of them have no individual intelligence to speak of. They are specialized for various functions (particularly warriors), and exist entirely to serve the Hive Entity as a whole.

A Hive Entity's intelligence may reside in specialized "brain" individuals, which have only vestigial legs and even digestive systems, and are themselves entirely dependent on various kinds of "slave" individuals. Or the intelligence may somehow be spread out collectively though the whole Hive Entity, each individually-mindless inhabitant in effect contributing a few neurons to the whole. (Or some combination of these.) Some Hive Entities may not really be intelligent at all, but have evolved the ability to blow up other people's spacecraft the same way that some ants have evolved the ability to keep aphids as cattle.

When encountered in the KNOWN GALAXY, Hive Entities are almost invariably hostile. They apparently have nothing to offer in trade, much less arts or ideas, and you can't even negotiate a peace treaty with them, because there isn't really anyone to negotiate with. In WARFARE they are at once mindlessly ruthless - attacking in endless waves like giant army ants, which they also tend to look like - and malevolently intelligent. Putting no value on their own automaton lives, they obviously have no concept of valuing anyone else's.

In fact, Hive Entities are basically the ultimate totalitarians. It is no surprise that they appeared in written SF, so far as I know, around the mid 20th century CE, the same time that giant ants showed up in HOLLYWOOD SCIFI. Hive Entities were, and are, Nazis, Stalinists, and ChiComs, magnified to the Nth degree and let loose to give better races a harsh lesson in the precious value of individualism.

Which is really too bad. Taken in themselves, Hive Entities are a fascinating concept, precisely because they really are Really Alien. Yet if in fact they are intelligent, they must have ideas of some sort, however hard for them to express in a way we can understand. If the intelligence is spread through the hive community, the time scale of its thinking might be drastically slower than our own, maybe taking weeks to form the equivalent of a sentence. This indeed could make them tricky to deal with at first, since on our time scale they would necessarily act on reflex.

But if we EARTH HUMANS, and similar species, really want to demonstrate individual intelligence, we might actually try figuring the Hive Entities out, and see if we and they might have something to contribute to each other, instead of fighting pretty mindless wars with them. Don't hold your breath, though. It hasn't happened in fifty years, so far as I know.

But maybe the Hive Entities' mental time scale is longer than that.


I love social insects. Whether they’re ants, bees, termites, wasps, aphids, thrips, or ambrosia beetles, I find them fascinating to learn about. But if the sci-fi books I read as a kid had had their way, I should have run screaming from every ant colony I saw.

From the buggers in Ender’s Game to the Borg in Star Trek to the Vord in Codex Alera to ants and termites themselves from a morph’s-eye view in Animorphs, social insects, and the aliens or artificial intelligences that closely resemble them, are portrayed as “hive minds” with an emotional tone of existential terror. And I’m here to tell you that these portrayals are totally unfair.

What they get right

Here are some features that most portrayals of social insects and their analogues in sci-fi get right. Yes, social insect colonies have queens that are primarily responsible for reproduction. Yes, social insects have very different sensory modalities from ours. We primarily use sight and sound to communicate and navigate the world, while social insects use taste and smell and vibration. Yes, social insects have specialized division of labor to particular tasks, and yes, they are willing to sacrifice themselves in droves to protect the colony. And sometimes, they will enslave social insects from other colonies or even species to serve their own ends (x).

Thus ends what sci-fi portrayals get right.

What they get wrong: Queens

Almost universally in sci-fi, when you kill the queen, the hive disintegrates into chaos. You’ve cut off the head! The central intelligence of the hive is gone! They’re just mindless borg-units with no idea what to do!

Indeed, in some social insects, such as leafcutter ants, if you kill the queen, the whole colony will die – but probably not for the reasons you think. However, it’s more common for social insects to be able to carry on just fine regardless. In most ants and bees, there are “backup” queens that are reared up by the workers in case the current queen should die. And in many social insects, a worker can step up and become a queen in her place.

But here is the most important problem with the sci-fi trope of killing the queen to kill the hive. The queen is not the brain of the hive. She is the ovary.

If you think of a social insect colony as a superorganism, which it’s useful to do in many cases, different groups of insects within the colony act like organs. One caste protects the colony from invaders, which is like an immune system. One caste scouts for new places to forage, which is like a sensory system. Generally, science fiction has a good grip on this idea. Where sci-fi authors fail is that they think the queen is the brain of this superorganism. She is not. She is the reproductive system. The queen does not control what happens in the hive any more than your reproductive system controls what happens in your body. (Which is to say, she has some influence, but she is not the brains of the operation.)

The reason why leafcutter ant colonies die when the queen dies is because the colony has been castrated, not beheaded. Most animals die when they are no longer able to reproduce, even if their brains are still perfectly functional. For castrated colonies with no backup queen or gamergate and no hope of getting one, there is no point in carrying on. Their evolutionary line has ended.

What they get wrong: Swarm intelligence

Here is how social insect hive minds work in science fiction: the queen does the thinking, and the rest of the hive goes along with whatever she thinks.

Now, I’ve already told you that the queen is not the brain of the hive. So where is the brain? Well, that is exactly the point of swarm intelligence. The brain does not reside in one particular animal. It’s an emergent property of many animals working together. A colony is not like your body, where your brain sends an impulse to your mouth telling it to move, and it moves. It’s more like when two big groups of people are walking toward each other, and they spontaneously organize themselves into lanes so no one has a collision (x). There’s no leader telling them to do that, but they do it anyway.

Much of the efficiency of social insect colonies comes from very simple behavioral rules (x). Hymenopterans, the group of insects that includes ants, bees, and wasps, have a behavioral rule: work on a task until it is completed, and when it is done, switch to a different task. If you force solitary bees (yes, most bee species are solitary) to live together, they will automatically arrange themselves into castes, because when one bee sees another bee doing a task like building the nest, its behavioral rule tells it that the task is completed and it needs to switch to a different task, like looking for food.

Individually, a social insect isn’t all that smart, whether it’s a queen, worker, soldier, or drone. But collectively, social insects can do incredibly smart things, like find the most efficient route from the colony to some food (x), or choose the perfect spot to build their hive (x).

What they get wrong: Individuality

The existential terror of the hive mind in science fiction comes from the loss of the self. The idea is that in a social insect colony, there is no individual, but one whole, united to one purpose. No dissent, disagreement, or conflicting interests occur, just total lockstep. I totally get why that’s scary.

The thing is, it’s just not true of real social insects. There is conflict within colonies all the time, up to and including civil war.

A common source of conflict within colonies is worker reproduction. Yes, in most social insects, workers can in fact reproduce, though usually they can only produce males. So why don’t they? Because it’s not in the interest of their fellow workers. Workers are more closely related to their siblings and half-siblings produced by the queen than they are to their nephews, so they pass on more of their genes if they spend resources on raising the queen’s eggs. So, if a worker catches its fellow laying an egg, it will eat the egg. Not exactly “all for one and one for all,” is it?

Worker insects may also fight in wars of succession. If there is more than one queen in a species where queens do not tolerate each other (yes, there are species where multiple queens get along together just fine), such as monogynous fire ants, the workers will ally themselves with one queen or another and engage in very deadly civil war.

Finally, in some species, the queen needs to bully the workers into doing their jobs, and the dominant workers need to bully subordinate workers into doing their jobs (x). Yes, sometimes workers try to laze around and mooch.

Surprisingly human

Here’s what I find weird about depictions of social insects in science fiction. They are portrayed as utterly alien, Other, and horrifying. Yet humans and social insects are very, very similar. The famous sociobiologists E.O. Wilson and Bernard Crespi have both described humans as chimpanzees that took on the lifestyle of ants.

I think what fascinates people, including me, about ants, bees, and their ilk is that you watch, say, a hundred ants working together to tear up a leaf into tiny bits and carry it back to their colony, or a hundred bees all appearing out of seemingly nowhere to sacrifice themselves en masse to stop a bear from eating their hive, and it looks like magic. It really does look like some kind of overmind is controlling their collective actions.

But imagine you’re an alien who comes to Earth, and you know nothing about humans or the way we communicate. Wouldn’t we look exactly the same to them as ants and bees look to us? Wouldn’t they look at us sacrificing our lives by the thousands in wars, or working together to build cities from nothing, and think, Wow, how do they coordinate themselves in such huge numbers, why do they give up their lives to defend their borderlines, I guess there must be some kind of mega-brain they all share that tells them what to do, and they just march in lockstep and do it.

If there’s anything I’ve learned from the study of both social insects and humans, it’s that any system that looks monolithic and simple from a distance is in fact fractured, messy, and complicated when you look at it up close.

Social insects aren’t scary mindless robot-aliens. They’re a lot like you and me. As much as I was terrified as a kid by the Animorphs book where an ant morphs into Cassie and screams in pure existential horror at its sudden individuality, I actually think an ant would adjust very easily to being a human, and that a human would adjust very easily to being an ant — much more easily, in fact, than humans adjusted to morphing, say, sharks, in the very same book series.


      “I know you have all been wondering,” began Alveron, “why we were ordered to abandon our survey and to proceed at such an acceleration to this region of space. Some of you may realize what this acceleration means. Our ship is on its last voyage: the generators have already been running for sixty hours at Ultimate Overload. We will be very lucky if we return to Base under our own power.
     “We are approaching a sun which is about to become a Nova (yes, I know sun-like stars cannot go nova. Story was written in 1946). Detonation will occur in seven hours, with an uncertainty of one hour, leaving us a maximum of only four hours for exploration. There are ten planets in the system about to be destroyed — and there is a civilization on the third (Terra, of course). That fact was discovered only a few days ago. It is our tragic mission to contact that doomed race and if possible to save some of its members. I know that there is little we can do in so short a time with this single ship. No other machine can possibly reach the system before detonation occurs.”

     Torkalee’s three companions lost no time in leaving the machine. Leader of the party, by seniority of rank and race was T’sinadree, who like Alveron himself had been born on one of the ancient planets of the Central Suns. Next came Alarkane, from a race which was one of the youngest in the Universe and took a perverse pride in the fact. Last came one of the strange beings from the system of Palador. It was nameless, like all its kind, for it possessed no identity of its own, being merely a mobile but still dependent cell in the consciousness of its race. Though it and its fellows had long been scattered over the galaxy in the exploration of countless worlds, some unknown link still bound them together as inexorably as the living cells in a human body.
     When a creature of Palador spoke, the pronoun it used was always “We.” There was not, nor could there ever be, any first person singular in the language of Palador.

     The party stopped dead and looked down the passageway with a single thought. A tunnel, leading down into the depths of Earth! At its end, they might yet find the people of this world and rescue some of them from their fate. For there was still time to call the mother ship if the need arose.
     T’sinadree signaled to his commander and Torkalee brought the little machine immediately overhead. There might not be time for the party to retrace its footsteps through the maze of passages, so meticulously recorded in the Paladorian mind that there was no possibility of going astray. If speed was necessary, Torkalee could blast his way through the dozen floors above their head. In any case, it should not take long to find what lay at the end of the passage.
     It took only thirty seconds. The tunnel ended quite abruptly in a very curious cylindrical room with magnificently padded seats along the walls. There was no way out save that by which they had come and it was several seconds before the purpose of the chamber dawned on Alarkane’s mind. It was a pity, he thought, that they would never have time to use this. The thought was suddenly interrupted by a cry from T’sinadree. Alarkane wheeled around, and saw that the entrance had closed silently behind them.

     Even in that first moment of panic, Alarkane found himself thinking with some admiration: Whoever they were, they knew how to build automatic machinery!
     The Paladorian was the first to speak. It waved one of its tentacles toward the seats.
     “We think it would be best to be seated,” it said. The multiplex mind of Palador had already analyzed the situation and knew what was coming.
     They did not have long to wait before a low-pitched hum came from a grill overhead, and for the very last time in history a human, even if lifeless, voice was heard on Earth. The words were meaningless, though the trapped explorers could guess their message clearly enough. “Choose your stations, please, and be seated.” Simultaneously, a wall panel at one end of the compartment glowed with light. On it was a simple map, consisting of a series of a dozen circles connected by a line. Each of the circles had writing alongside it, and beside the writing were two buttons of different colors. Alarkane looked questioningly at his leader. “Don’t touch them,” said T’sinadree. “If we leave the controls alone, the doors may open again.” He was wrong. The engineers who had designed the assumed that anvone who entered it would naturally wish to go somewhere. If they selected no intermediate station, their destination could only be the end of the line.
     There was another pause while the relays and thyratrons (the controlling computer) waited for their orders. In those thirty seconds, if they had known what to do, the party could have opened the doors and left the subway. But they did not know, and the machines geared to a human psychology acted for them.

     The surge of acceleration was not very great; the lavish upholstery was a luxury, not a necessity. Only an almost imperceptible vibration told of the speed at which they were traveling through the bowels of the earth, on a journey the duration of which they could not even guess. And in thirty minutes, the S9000 would be leaving the Solar System.
     There was a long silence in the speeding machine. T’sinadree and Alarkane were thinking rapidly. So was the Paladorian, though in a different fashion. The conception of personal death was meaningless to it, for the destruction of a single unit meant no more to the group mind than the loss of a nail-paring to a man. But it could, though with great difficulty, appreciate the plight of individual intelligences such as Alarkane and T’sinadree, and it was anxious to help them if it could.
     Alarkane had managed to contact Torkalee with his personal transmitter, though the signal was very weak and seemed to be fading quickly. Rapidly he explained the situation, and almost at once the signals became clearer. Torkalee was following the path of the machine, flying above the ground under which they were speeding to their unknown destination. That was the first indication they had of the fact that they were traveling at nearly a thousand miles an hour, and very soon after that Torkalee was able to give the still more disturbing news that they were rapidly approaching the sea. While they were beneath the land, there was a hope, though a slender one, that they might stop the machine and escape. But under the ocean — not all the brains and the machinery in the great mother ship could save them. No one could have devised a more perfect trap.
     The little light on the map crawled slowly through the illuminated circle without checking its speed. And at the same time Torkalee called from the ship overhead. “You have just passed underneath a city and are heading out to sea. There cannot be another stop for nearly a thousand miles.”

     Alveron had given up all hope of finding life on this world. The S9000 had roamed over half the planet, never staying long in one place, descending ever and again in an effort to attract attention. There had been no response; Earth seemed utterly dead. If any of its inhabitants were still alive, thought Alveron, they must have hidden themselves in its depths where no help could reach them, though their doom would be nonetheless certain.
     Rugon brought news of the disaster. The great ship ceased its fruitless searching and fled back through the storm to the ocean above which Torkalee’s little tender was still following the track of the buried machine.
     Fortunately, there had been no serious earthquakes yet. Far beneath the bed of the ocean, the wonderful piece of engineering which had been the World President’s private vacuum-subway was still working perfectly, unaffected by the tumult and destruction above. It would continue to work until the last minute of the Earth’s existence, which, if the astronomers were right, was not much more than fifteen minutes away — though precisely how much more Alveron would have given a great deal to know. It would be nearly an hour before the trapped party could reach land and even the slightest hope of rescue.

     Meanwhile, a mile below the bed of the ocean Alarkane and T’sinadree were very busy indeed with their private communicators. Fifteen minutes is not a long time in which to wind up the affairs of a lifetime. It is indeed, scarcely long enough to dictate more than a few of those farewell messages which at such moments are so much more important than all other matters.
     All the while the Paladorian had remained silent and motionless, saying not a word. The other two, resigned to their fate and engrossed in their personal affairs, had given it no thought. They were startled when suddenly it began to address them in its peculiarly passionless voice. “We perceive that you are making certain arrangements concerning your anticipated destruction. That will probably be unnecessary. Captain Alveron hopes to rescue us if we can stop this machine when we reach land again.”
     Both T’sinadree and Alarkane were too surprised to say anything for a moment. Then the latter gasped, “How do you know?
     It was a foolish question, for he remembered at once that there were several Paladorians — if one could use the phrase — in the S9000, and consequently their companion knew everything that was happening in the mother ship. So he did not wait for an answer but continued, “Alveron can’t do that! He daren’t take such a risk!”
     “There will be no risk,” said the Paladorian. “We have told him what to do. It is really very simple.”

     Alarkane and T’sinadree looked at their companion with something approaching awe, realizing now what must have happened. In moments of crisis, the single units comprising the Paladorian mind could link together in an organization no less close than that of any physical brain. At such moments they formed an intellect more powerful than any other in the Universe. All ordinary problems could be solved by a few hundred or thousand units. Very rarely, millions would be needed, and on two historic occasions the billions of cells of the entire Paladorian consciousness had been welded together to deal with emergencies that threatened the race. The mind of Palador was one of the greatest mental resources of the Universe; its full force was seldom required, but the knowledge that it was available was supremely comforting to other races. Alarkane wondered how many cells had co-ordinated to deal with this particular emergency. He also wondered how so trivial an incident had ever come to its attention.
     To that question he was never to know the answer, though he might have guessed it had he known that the chillingly remote Paladorian mind possessed an almost human streak of vanity. Long ago, Alarkane had written a book trying to prove that eventually all intelligent races would sacrifice individual consciousness and that one day only group-minds would remain in the Universe. Palador, he had said, was the first of those ultimate intellects, and the vast, dispersed mind had not been displeased.

     They had no time to ask any further questions before Alveron himself began to speak through their communicators.
     “Alveron calling! We’re staying on this planet until the detonation waves reach it, so we may be able to rescue you. You’re heading toward a city on the coast which you’ll reach in forty minutes at your present speed. If you cannot stop yourselves then, we’re going to blast the tunnel behind and ahead of you to cut off your power. Then we’ll sink a shaft to get you out — the chief engineer says he can do it in five minutes with the main projectors. So you should be safe within an hour, unless the sun blows up before.”
     “And if that happens, you’ll be destroyed as well! You mustn’t take such a risk!”
     “Don’t let that worry you; we’re perfectly safe. When the sun detonates, the explosion wave will take several minutes to rise to its maximum. But apart from that, we’re on the night side of the planet, behind an eight-thousand-mile screen of rock. When the first warning of the explosion comes, we will accelerate out of the Solar System, keeping in the shadow of the planet. Under our maximum drive, we will reach the velocity of light before leaving the cone of shadow, and the sun cannot harm us then.”

     T’sinadree was still afraid to hope. Another objection came at once into his mind. “Yes, but how will you get any warning, here on the night side of the planet?”
     “Very easily,” replied Alveron. “This world has a moon which is now visible from this hemisphere. We have telescopes trained on it. If it shows any sudden increase in brilliance, our main drive goes on automatically and we’ll be thrown out of the system.”
     The logic was flawless. Alveron, cautious as ever, was taking no chances. It would be many minutes before the eight-thousand-mile shield of rock and metal could be destroyed by the fires of the exploding sun. In that time, the S9000 could have reached the safety of the velocity of light.

     Alarkane pressed the second button when they were still several miles from the coast. He did not expect anything to happen then, assuming that the machine could not stop between stations. It seemed too good to be true when, a few minutes later, the machine’s slight vibration died away and they came to a halt.
     The doors slid silently apart. Even before they were fully open, the three had left the compartment. They were taking no more chances. Before them a long tunnel stretched into the distance, rising slowly out of sight. They were starting along it when suddenly Alveron’s voice called from the communicators.
     “Stay where you are! We’re going to blast!”

     The ground shuddered once, and far ahead there came the rumble of falling rock. Again the earth shook — and a hundred yards ahead the passageway vanished abruptly. A tremendous vertical shaft had been cut clean through it.
     The party hurried forward again until they came to the end of the corridor and stood waiting on its lip. The shaft in which it ended was a full thousand feet across and descended into the earth as far as the torches could throw their beams. Overhead, the storm clouds fled beneath a moon that no man would have recognized, so luridly brilliant was its disk. And, most glorious of all sights, the S9000 floated high above, the great projectors that had drilled this enormous pit still glowing cherry red.
     A dark shape detached itself from the mother ship and dropped swiftly toward the ground. Torkalee was returning to collect his friends. A little later, Alveron greeted them in the control room. He waved to the great vision screen and said quietly, “See, we were barely in time.”

From RESCUE PARTY by Arthur C. Clarke (1946)

      The historians can't seem to settle whether to call this one "The Third Space War" (or the "Fourth"), or whether "The First Interstellar War" fits it better. We just call it "The Bug War" if we call it anything, which we usually don't.

     I do have one comment to make to any armchair strategist who has never made a drop. Yes, I agree that the Bugs' planet possibly could have been plastered with H-bombs until it was surfaced with radioactive glass. But would that have won the war? The Bugs are not like us. The Pseudo-Arachnids aren't even like spiders. They are arthropods who happen to look like a madman's conception of a giant, intelligent spider, but their organization, psychological and economic, is more like that of ants or termites; they are communal entities, the ultimate dictatorship of the hive. Blasting the surface of their planet would have killed soldiers and workers; it would not have killed the brain caste and the queens—I doubt if anybody can be certain that even a direct hit with a burrowing H-rocket would kill a queen; we don't know how far down they are. Nor am I anxious to find out; none of the boys who went down those holes came up again.

     So suppose we did ruin the productive surface of Klendathu? They still would have ships and colonies and other planets, same as we have, and their HQ is still intact—so unless they surrender, the war isn't over. We didn't have nova bombs at that time; we couldn't crack Klendathu open. If they absorbed the punishment and didn't surrender, the war was still on.

     If they can surrender—

     Their soldiers can't. Their workers can't fight (and you can waste a lot of time and ammo shooting up workers who wouldn't say boo!) and their soldier caste can't surrender. But don't make the mistake of thinking that the Bugs are just stupid insects because they look the way they do and don't know how to surrender. Their warriors are smart, skilled, and aggressive—smarter than you are, by the only universal rule, if the Bug shoots first. You can burn off one leg, two legs, three legs, and he just keeps on coming; burn off four on one side and he topples over—but keeps on shooting. You have to spot the nerve case and get it … whereupon he will trot right on past you, shooting at nothing, until he crashes into a wall or something.

     The next eighteen hours were nightmare. I shan't tell much about it because I don't remember much, just snatches, stop-motion scenes of horror. I have never liked spiders, poisonous or otherwise; a common house spider in my bed can give me the creeps. Tarantulas are simply unthinkable, and I can't eat lobster, crab, or anything of that sort. When I got my first sight of a Bug, my mind jumped right out of my skull and started to yammer. It was seconds later that I realized that I had killed it and could stop shooting. I suppose it was a worker; I doubt if I was in any shape to tackle a warrior and win.

     Presently I got so that I could kill a Bug without wasting ammo or juice, although I did not learn to distinguish between those that were harmless and those that were not. Only about one in fifty is a warrior but he makes up for the other forty-nine. Their personal weapons aren't as heavy as ours but they are lethal just the same—they've got a beam that will penetrate armor and slice flesh like cutting a hard-boiled egg, and they cooperate even better than we do … because the brain that is doing the heavy thinking for a "squad" isn't where you can reach it; it's down one of the holes.

     We certainly didn't know that we were losing.

     Those Bugs lay eggs. They not only lay them, they hold them in reserve, hatch them as needed. If we killed a warrior—or a thousand, or ten thousand—his or their replacements were hatched and on duty almost before we could get back to base. You can imagine, if you like, some Bug supervisor of population flashing a phone to somewhere down inside and saying, "Joe, warm up ten thousand warriors and have 'em ready by Wednesday … and tell engineering to activate reserve incubators N, O, P, Q, and R; the demand is picking up."

     I don't say they did exactly that, but those were the results. But don't make the mistake of thinking that they acted purely from instinct, like termites or ants; their actions were as intelligent as ours (stupid races don't build spaceships!) and were much better coordinated. It takes a minimum of a year to train a private to fight and to mesh his fighting in with his mates; a Bug warrior is hatched able to do this.

     Every time we killed a thousand Bugs at a cost of one M.I. it was a net victory for the Bugs. We were learning, expensively, just how efficient a total communism can be when used by a people actually adapted to it by evolution; the Bug commissars didn't care any more about expending soldiers than we cared about expending ammo. Perhaps we could have figured this out about the Bugs by noting the grief the Chinese Hegemony gave the Russo-Anglo-American Alliance; however the trouble with "lessons from history" is that we usually read them best after falling flat on our chins.

     But we were learning. Technical instructions and tactical doctrine orders resulted from every brush with them, spread through the Fleet. We learned to tell the workers from the warriors—if you had time, you could tell from the shape of the carapace, but the quick rule of thumb was: If he comes at you, he's a warrior; if he runs, you can turn your back on him. We learned not to waste ammo even on warriors except in self-protection; instead we went after their lairs. Find a hole, drop down it first a gas bomb which explodes gently a few seconds later, releasing an oily liquid which evaporates as a nerve gas tailored to Bugs (it is harmless to us) and which is heavier than air and keeps on going down—then you use a second grenade of H. E. to seal the hole.

     We still didn't know whether we were getting deep enough to kill the queens—but we did know that the Bugs didn't like these tactics; our intelligence through the Skinnies and on back into the Bugs themselves was definite on this point. Besides, we cleaned their colony off Sheol completely this way. Maybe they managed to evacuate the queens and the brains … but at least we were learning to hurt them.

     The described real estate didn't seem worth the price. Planet P is smaller than Terra, with a surface gravity of 0.7, is mostly arctic-cold ocean and rock, with lichenous flora and no fauna of interest. Its air is not breathable for long, being contaminated with nitrous oxide and too much ozone. Its one continent is about half the size of Australia, plus many worthless islands; it would probably require as much terra-forming as Venus before we could use it.

     However we were not buying real estate to live on; we went there because Bugs were there—and they were there on our account, so Staff thought. Staff told us that Planet P was an uncompleted advance base (prob. 87±6 percent) to be used against us.

     Since the planet was no prize, the routine way to get rid of this Bug base would be for the Navy to stand off at a safe distance and render this ugly spheroid uninhabitable by Man or Bug. But the C-in-C had other ideas.

     The operation was a raid. It sounds incredible to call a battle involving hundreds of ships and thousands of casualties a "raid," especially as, in the meantime, the Navy and a lot of other cap troopers were keeping things stirred up many light-years into Bug space in order to divert them from reinforcing Planet P.

But the C-in-C was not wasting men; this giant raid could determine who won the war, whether next year or thirty years hence. We needed to learn more about Bug psychology. Must we wipe out every Bug in the Galaxy? Or was it possible to trounce them and impose a peace? We did not know; we understood them as little as we understand termites. To learn their psychology we had to communicate with them, learn their motivations, find out why they fought and under what conditions they would stop; for these, the Psychological Warfare Corps needed prisoners.

     Workers are easy to capture. But a Bug worker is hardly more than animate machinery. Warriors can be captured by burning off enough limbs to make them helpless—but they are almost as stupid without a director as workers. From such prisoners our own professor types had learned important matters—the development of that oily gas that killed them but not us came from analyzing the biochemistries of workers and warriors, and we had had other new weapons from such research even in the short time I had been a cap trooper. But to discover why Bugs fight we needed to study members of their brain caste. Also, we hoped to exchange prisoners.

     So far, we had never taken a brain Bug alive. We had either cleaned out colonies from the surface, as on Sheol, or (as had too often been the case) raiders had gone down their holes and not come back. A lot of brave men had been lost this way.

     Still more had been lost through retrieval failure. Sometimes a team on the ground had its ship or ships knocked out of the sky. What happens to such a team? Possibly it dies to the last man. More probably it fights until power and ammo are gone, then survivors are captured as easily as so many beetles on their backs.

     From our co-belligerents the Skinnies we knew that many missing troopers were alive as prisoners—thousands we hoped, hundreds we were sure. Intelligence believed that prisoners were always taken to Klendathu; the Bugs are as curious about us as we are about them—a race of individuals able to build cities, starships, armies, may be even more mysterious to a hive entity than a hive entity is to us.

     But in a hive polyarchy, some castes are valuable or so our Psych Warfare people hoped. If we could capture brain Bugs, alive and undamaged, we might be able to trade on good terms.

     And suppose we captured a queen!

     What is a queen's trading value? A regiment of troopers? Nobody knew, but Battle Plan ordered us to capture Bug "royalty," brains and queens, at any cost, on the gamble that we could trade them for human beings.

     The strategy was simple, and, I guess, logical … if we could afford the losses. Let the Bugs come up. Meet them and kill them on the surface. Let them keep on coming up. Don't bomb their holes, don't gas their holes—let them out. After a while—a day, two days, a week if we really did have overwhelming force, they would stop coming up. Planning Staff estimated (don't ask me how!) that the Bugs would expend 70 percent to 90 percent of their warriors before they stopped trying to drive us off the surface.

     Then we would start the unpeeling, killing surviving warriors as we went down and trying to capture "royalty" alive. We knew what the brain caste looked like; we had seen them dead (in photographs) and we knew they could not run—barely functional legs, bloated bodies that were mostly nervous system. Queens no human had ever seen, but Bio War Corps had prepared sketches of what they should look like—obscene monsters larger than a horse and utterly immobile.

     Besides brains and queens there might be other "royalty" castes. As might be—encourage their warriors to come out and die, then capture alive anything but warriors and workers.

     A tremendous shock wave slammed me just as I bounced again, slapped me sideways. Three minutes thirty-seven seconds—call it thirty miles. Was that our sappers "putting down their corks"? "First section! Brace yourselves for another shock wave!" I landed sloppily, almost on top of a group of three or four Bugs. They weren't dead but they weren't fighting; they just twitched. I donated them a grenade and bounced again. "Hit 'em now!" I called out. "They're groggy. And mind that next—"

     The second blast hit as I was saying it. It wasn't as violent. "Cunha! Call off your section. And everybody stay on the bounce and mop up."

     The call-off was ragged and slow—too many missing files as I could see from my physicals display. But the mop-up was precise and fast. I ranged around the edge and got half a dozen Bugs myself—the last of them suddenly became active just before I flamed it. Why did concussion daze them more than it did us? Because they were unarmored? Or was it their brain Bug, somewhere down below, that was dazed?

     In one long stretch of tunnel I lost touch with Brumby—some oddity in reflection of radio waves, I guess, for I picked him up at the next intersection. But there he could not tell me which way to turn. This was the place, or near the place, where the Bugs had hit them.
     And here the Bugs hit us.
     I don't know where they came from. One instant everything was quiet. Then I heard the cry of "Bugs! Bugs!" from back of me in the column, I turned—and suddenly Bugs were everywhere. I suspect that those smooth walls are not as solid as they look; that's the only way I can account for the way they were suddenly all around us and among us.
     We couldn't use flamers, we couldn't use bombs; we were too likely to hit each other. But the Bugs didn't have any such compunctions among themselves if they could get one of us. But we had hands and we had feet—
     It couldn't have lasted more than a minute, then there were no more Bugs, just broken pieces of them on the door … and four cap troopers down.
     One was Sergeant Brumby, dead. During the ruckus the second section had rejoined. They had been not far away, sticking together to keep from getting further lost in that maze, and had heard the fight. Hearing it, they had been able to trace it by sound, where they had not been able to locate us by radio.
     Cunha and I made certain that our casualties were actually dead, then consolidated the two sections into one of four squads and down we went—and found the Bugs that had our platoon sergeant besieged.
     That fight didn't last any time at all, because he had warned me what to expect. He had captured a brain Bug and was using its bloated body as a shield. He could not get out, but they could not attack him without (quite literally) committing suicide by hitting their own brain.
     We were under no such handicap; we hit them from behind.
From STARSHIP TROOPERS by Robert Heinlein (1959)

Composite Creatures

Composite creatures are subtly different from Hive Entities.

Hive entities are swarms of identical type creatures who coordinate their movement and actions (e.g., a drove of army ants). Generally the component creatures are not physically connected, but communicate with each other in some way.

Composite creatures (aka colonial organisms, symbiotic collectives, or modular organisms) are assemblages composed of several different types of creature, who coordinate their movement and actions (e.g., a portuguese man o' war). Generally the component creatures are physically bonded into one unit.

Of course one sinister variant is the alien mind-enslaving parasite creature. They slip inside your body and make a composite creature of you-the-slave and them-the-master. The benevolent version has the alien entering into symbiosis when it slips inside your body,. This results in your body giving it food and it giving you incidentals like prolonged life span, accelerated healing, telepathy, and other perks.

In Robert Sheckley's short story Specialist (online here) (1953) starships are composite creatures. Many planets are home to "wall" aliens who form the hull, some planets have "atomic engine" aliens who are the normal space propulsion system, some have "eye" aliens who are sensors, some have "network" aliens who plug into the minds of all the components for coordination, and some have food producer aliens. As it turns out, Terra is planet home to "pushers", who are the FTL drives of starships.

In Star Trek (ST:TNG and ST:DS9) the species the Trill are composite creatures. The Host is a humanoid, with a sort of kangaroo-like pouch. The Symbiont is a squirmy little thing that lives in the pouch. Both parts are intelligent, and together form a composite personality. The symbiont has a life span several times as long as the host, so they occupy several hosts during their lives.


(ed note: the aliens known as "Tinker Composites" are actually hive entities. The "Angels" are composite creatures)

The Angel acknowledged the reference with a wave of blue-green fronds. It was itself a symbiotic life-form, discovered a century and a half earlier when the expanding wave-front of the Perimeter had reached the star Capella and the planets around it. The visible part of the Angel was the Chassel-Rose, slow-moving, mindless, and wholly vegetable. Shielded within the bulbous central section lived the sentient crystalline Singer, relying upon the Chassel-Rose for habitat, transportation, and communication with the external world.

The screen first showed the quivering mass of a Tinker Composite, men the enlarged view of individual components from which the Tinker was made. They were fast-flying legless creatures about the size of a humming-bird. Each of them possessed just enough nerve tissue for independent locomotion, sensation, feeding, breeding, and clustering. Each had a ring of eyes on its blunt head, and long antennae to permit coupling into the Composite. The bodies were purple and black, shiny, sticky-looking.

"I do not ask any. I would suggest that you decide for Dougal MacDougal what his line ought to be when he discusses this with the Stellar Group Ambassadors. And you ought to know what I am doing with your pseudo-Construct. We have the first Pursuit Team assembled and waiting, out on Dembricot: one human woman, one Tinker ten-thousand Composite, one sterile female Pipe-Rilla, and their preferred form of Angel—an experienced Singer carried by a new-grown Chassel-Rose."

Telepathy? Even as the thought came, Chan rejected it. He remembered what Flammarion had told him during a Ceres briefing: "An Angel doesn't normally think like a human, but not because it can't. When an Angel wants to, it can put part of its brain into what we call 'emulator mode.' Then that piece can be instructed by the Angel to think like a human, or a Pipe-Rilla, or a Tinker of any number of components, or maybe like all three at once. And probably any other creature you care to name, maybe even like a Morgan Construct. And while all that's going on, the Angel still performs logical analysis in its own way. Whatever that might be."

Skrynol extended a tough and whiskery palp behind her for Mondrian to hold on to, and led the way up a thirty-degree slope. "As for the Tinkers, at the level of individual components they know aggression, and they fight over food, living space, and mates. But a Tinker Composite has no such needs. It does not eat, drink, or mate in the Composite form. It is in some sense immortal, and in another sense it has no permanent existence at all. It has no sense of danger at the Composite level, because at the first sign of danger its instinct is simply to disperse. And resolved to elements, the Composite no longer exists to feel fear or danger. Mercantor is a cold world, and to a Tinker 'intelligence' is a synonym for 'closeness and warmth.'

"As for the Angels, their form of intelligence remains as much of a mystery to us as I suspect it does to you. The Chassel-Rose will live and bud and die, and know little more than a yearning for light and fertile soil. But the Singers live a long, long time, and no one knows how they came to be intelligent, or what purpose that intelligence evolved to serve. Perhaps some day, after another few hundred years of interaction and mutual effort ..."

The Tinker had increased noticeably in size as the sun set and the air was less scorchingly hot. The central mass contained almost twice as many components as when Chan had first met it, and its response time was painfully slow.

The Angel at least would not run away. It could not. No matter how intelligent the crystalline Singer might be, it was bound within the vegetable body of the Chassel-Rose and suffered that plant's extreme slowness of movement. When the Angel wanted to move, the bulbous green body first lifted the root-borers up close underneath it. When they were stowed safely away it could creep along on the down-pointing adventitious stems at the edge of the body base. Chan guessed that if it was in a real hurry it might manage up to a hundred steps an hour.

From THE NIMROD HUNT by Charles Sheffield (1986)

Crystal Life

These are critters that look like large quartz crystals, often with flashing lights inside. Most are immobile, some can move. Some crystal life is silicon-based life, other are not.

An odd one was the Monolith Monsters. They were not invading aliens so much as an extraterrestrial chemical reaction. Instant monster: just add water.

In some cases the line between crystal life and electronic life is very blurry. The most obvious basis for such life is that it is based on semiconductor electronic circuits that somehow evolve and become more complicated inside the crystals.


(ed note: Mr. Miller apparently got a good bargain on a crate of exclamation points.)

It wakened a lustrous opalescence in the two great spheres (alien spaceships) that nestled like mighty twin pearls against the dark rock, to create beings of the rock and of the shadow, gliding wraithlike among the shattered boulders!

Painfully I crept through the dense growth of the brink, nearer to those great spheres and their dreadful cargo. Within me my brain whirled and throbbed, my throat froze against the cry of shocked incredulity that rushed to my lips, cold, clammy sweat oozed from gaping pores ! It was beyond all reason — all possibility ! And yet — it was! Now I could see them clearly, rank on rank of them in orderly file, some hundred of them, strewn in great concentric rings about the softly glowing spheres — harsh as the black rock itself, hard, and glittering, and angular — a man’s height and more from summit to base — great, glittering tetrahedra — tetrahedra of terror!

They were tetrahedra, and they were alive — living even as you and I! They stirred restlessly in their great circles, uneasy in the dim light. Here and there little groups formed, and sometimes they clicked together in still other monstrous geometric shapes, yet always they moved with an uncanny stillness, darting with utter sureness among the scattered rocks. And now from the nearer of the twin spheres came another of their kind, yet twice their size, the pearly walls opening and closing as by thought-magic for his passing! He swept forward a little, into the full light of the moon, and the rings followed him, centered about him, until the spheres lay beyond the outermost and the giant tetrahedron faced alone the hosts of his lesser fellows!

Then came their speech — of all things the most mind-wracking! I felt it deep within my brain, before I sensed it externally, a dull, heavy rhythm of insistent throbbing, beating at my temples and throwing up a dull red haze before my staring eyes!

“Yes, I’m Hawkins. The plane is somewhere over there, if it didn’t burn, with all your supplies in it. I was held up crossing the mountains. But tell me, first — those things, there — are they alive?”

“You've wondered that? I suppose anyone would. The Indians make them gods of a kind — realize they’re beyond all experience and tradition. But I'm a biologist. I have had some experience in strange forms of life. They are as much alive as we — perhaps even more than we. After all, if life is energy, why should it not rest where it will? Need we — soft, puny things of carbon and water and a few unstable elements — be the only things to harbor life? But this is no place to moralize — come on!”

And through the curtain where fire of heavens and fire of Earth met in that terrible holocaust, those three saw the curving flames of the twin spheres gape wide, saw huge angular shapes file from the darkness within — shapes never yet associated in the Mind of Man with the meaning of life! Careless of the flame that seethed about them, they glided out over the fusing rock of the valley floor, score on score of them, showing in the fierce glare as mighty, eight-foot tetrahedra of dark, glistening crystal. They were of a purple that seemed to be of the essence of the things themselves, rather than a pigmentation of their surface; and near one apex each had two green-yellow unstaring, unseeing eyes!

Within them one glimpsed a spherical body — purple too — from which ran hundreds of curious filaments to the smooth surfaces. Tetrahedra they were — living tetrahedra of chilling terror that feared neither flame nor lightning and spread destruction on every side!

Sick at heart the three men watched, while the flames died and the winds came and stripped the blanket of dust and ash from the blasted rock. The tetrahedra meanwhile glided about their endless affairs, forming and reforming in geometric pattern. Or they clicked swiftly into many-faceted forms that in turn mounted into monolithic, crystalline monstrosities, then melted with startling suddenness into their original components. These were idle, pointless maneuverings from the human viewpoint, yet fraught with some hidden meaning and purpose as alien to Earth as the things themselves. They suggested the terrible energies that were under their control — energies such as our little science has never hinted at.

Now, in the full light of day, I could see that it was as Professor Hornby had said. The tetrahedra were formed from some hard, crystalline mineral, black almost to invisibility, with a faint wash of rich purple running through it. As they moved, the sun sent up glittering flashes of brilliance from their polished flanks, dancing like little searchlight rays along the shadowed face of the forest. For the tetrahedra were restless, were weaving aimlessly in and out among the boulders in weird arabesques as of some unearthly dance of the crystal folk, were condensing in little groups of half a dozen or less that formed and broke again even as do restless humans, waiting impatiently for some anticipated event.

Apart from the rest, motionless in a sort of circular clearing among the rocks, squatted the giant leader of the tetrahedra. In him the deep violet of the crystal became a rich, plum-like hue, purple flushed with warm red, and the underlying black seemed less harsh. It was warmer and more like the calm velvet of the tropic night. But these are impressions, qualitative terms with which to distinguish him in some way other than by mere size from his fellows. To an observer, the distinction was apparent, but it is not easy to express in everyday terms. It must suffice that he was indefinably different from the others, that he seemed to have character and personality, where the rest were but pyramidal crystals, albeit terribly alive.

And now the giant leader was dinning out his mighty call in long, slow billows of beating sound that seemed to thrust me back, press me into the dark of the forest, away from the alien monsters of the valley! In response came thirty of the lesser tetrahedra, chosen seemingly at random from the scattered ranks, to range themselves at equal intervals about their master, forming a single great circle a dozen yards in diameter.

Again the throbbing call shattered against the cliffs about me, and now all the hordes of the tetrahedra broke into flowing motion, converging in a torrent of glittering purple crystal upon the natural amphitheater, clustering in threes at the spots that their fellows had marked — all but ten, who glided into place before every third group, forming a giant toothed wheel with hub and rim and spokes of living, sentient crystal — crystal with a purpose!

There under that blazing sun they lay, gleaming like giant purple gems against the jetty rock. I thought of the great stone wheel of Stonehenge, and of the other monolithic circles that men have found in England and on the Continent. Strange resemblance, between the pattern of living monsters of another world and the ancient temples of a prehistoric race! And yet, is it too far-fetched to suggest that the superstitious savages should pattern their greatest temples after the unearthly gods of their worship — gods of purple crystal that came and smote and vanished again into the skies, leaving the memory of their inevitable circling, and the thunder of their language in the great drums of worship? May it not be that they have come before, and found Earth unfitted for their usage, and passed on to other worlds? And if they have so come, and found us wanting, what lies beyond that has prevented them from bearing back the tale of their findings, marking Earth as useless for their tetrahedral purposes ? Why have they had to come again and again ?

I COULD see that the groups of three that formed the toothed rim of the giant crystal wheel were tipping inward, bringing their peaks together in a narrow focus, and more, that the ten that were the spokes, the binding members of the wheel, were of the same rich hue as their master. The shadows of the myriad tetrahedra squatted short and black about their shining bases, against the shining rock.

As the sun soared higher, pouring its blazing rays straight down upon the sweltering world, I sensed the beginning of a vague roseate glow at the foci of the circling trios, a glow as of energy, light, focussed by the tetrahedra themselves, yet not of themselves, but sucked from the flood of light that poured upon them from above. For the light that was reflected from their sides gleamed ever bluer, ever colder, as they drank in the warm red rays and spewed them forth again into the seething globes of leashed energy that were forming just beyond their pointing tips!

The rose-glow had deepened to angry vermillion, seemingly caged within the spheres defined by the tips of the tilted tetrahedra. Thirty glowing coals against the black, ninety great angular forms gleaming ghastly blue in the pillaged sunlight, forms that were slowly closing in upon the center, upon their mighty master, bearing him food, energy of the sun for his feasting!

Now the scarlet flame of the prisoned light was mounting swiftly in an awful pinnacle of outrageous color — pure fire torn from the warm rays of the sun — raw energy for the glutting of these tetrahedral demons of another world! It seemed to me that it must needs burst its bounding spheres and fuse all that crystal horde with its unleashed fury of living flame, must win free of the unimaginable forces that held it there between the eager, glittering facets, must burst its unnatural bonds and sweep the valley with a tempest of awful fire that would consign the furnace of the tetrahedra to pitiful insignificance! It did none of these, for the power that had reft it from the golden sunbeams could mould it to the use and will of the tetrahedra, as clay before the potter!

Slowly the great ring contracted, slowly the tetrahedra tipped toward their common center, bearing at their foci the globes of angry flame. Now they stopped, hung for a long moment in preparation. Then in an instant they loosed the cradled energy of the spheres in one mighty blaze of blinding crimson that swept out in a single huge sheet of flame, blanketing all the giant wheel with its glory, then rushing into the blazing vortex of its center. Here, all the freed energy of the flame was flowing into the body of the mighty ruler of the tetrahedra, bathing him in a fury of crimson light that sank into his glowing facets as water into parched sand of the desert, bringing a fresh, new glow of renewed life to his giant frame!

And now, as in recoil, there spouted from his towering peak a fine, thin fountain of pale blue fire, soundless, like the blaze of man-made lightning between two mightily energized electrodes — the blue of electric fire — the seepage of the giant’s feast! Like slaves snatching at the crumbs from their master’s board, the ten lesser tetrahedra crowded close. As their fierce hunger voiced itself in awful, yearning force, the fountain of blue flame split into ten thin tongues, barely visible against the black rock, that bent down into the pinnacles of the ten and poured through them into the crowding rim of the giant wheel, a rim where again the spheres of crimson fire were mounting to their climactic burst!

Again the crimson orbs shattered and swept over the horde in a titanic canopy of flame, and again the giant master drank in its fiery glory! Now the fountain of seepage had become a mighty geyser of sparkling sapphire light that hurtled a hundred feet into the shimmering atmosphere, and, bent by the fierce hungering of the lesser creatures, curved in a glorious parabola above the crystal wheel, down over them and into them, renewing their substance and their life!

For as I watched, each tetrahedron began to swell, visibly, creeping in horrid slow growth to a magnitude very little less than that of their giant leader. And as they mounted in size, the torrent of blue fire paled and died, leaving them glutted and expectant of the final stage!

It came, with startling suddenness! In an instant each of the hundred clustering monsters budded, burst, shattered into four of half its size that cleaved from each corner of the parent tetrahedron. They left an octahedral shape of transparent crystal, colorless and fragile, whence every evidence of life had been withdrawn into the new-born things — a shell that crumpled and fell in fine, sparkling crystal dust to the valley floor. Only the giant ruler lay unchanged beneath the downward slanting rays of the sun. The hundred had become four hundred! The tetrahedra had spawned!

Four hundred of the monstrous things where a hundred had lain the moment before! Drinking in the light of the noonday sun, sucking up its energy to give them substance, these tetrahedral beings from an alien world held it in their power to smother out the slightest opposition by sheer force of ever-mounting numbers! Against a hundred, or four hundred, the armies and the science of mankind might have waged war with some possibility of success, but when each creature of these invulnerable hosts might become four, with the passing of each noon’s sun, surely hope lay dead ! Man was doomed!

“Do you realize that this spawning means that they’re ready to go ahead and burn their way right through everything — make this whole planet a safer and better place for tetrahedra? Doc has figured they’re from Mercury — overcrowded, probably, by this wholesale system of reproduction in job-lots, and hunting for new stamping-grounds. I don’t know what our chances are of bucking them — about a quarter of what they were an hour ago — but they’re mighty slim, armed as we are. You’ve got the other machine-gun?”

I HAD no trouble in finding the Professor. In truth, he found me. He was all but boiling over with excitement, for he had seen something we had not. “Hawkins,” he exclaimed, grabbing my shoulder fiercely, “did you see them spawn? It is remarkable — absolutely unequalled! The speed of it all — and, Hawkins, they do not have to grow before cleaving. I saw two that divided and redivided into three-inch tetrahedra — over a thousand of them ! Think of it — Hawkins, they can overrun our little planet in a few days, once they start! We’re done for!”

Now, their army of destruction assembled, the tetrahedra began their conquest of Earth! In vast waves of horrid destruction with rays of angry yellow flame darting from apexes their flaming floods of energy swept over the jungle, and now not even its damp dark could resist. Mighty forest-giants toppled headlong, by the cleaving yellow flame, to melt into powdery ash before they touched the ground. Giant lianas writhed like tortured serpents as their juices were vaporized by the awful heat, then dropped away in death to lie in long grey coils along the stripped rock of the forest floor — rock that was fast taking on the glassy glare of the little valley, rock fused by heat such as Earth had never known.

Now we could watch their plan of campaign, and our hearts sank in fear for our race, for while half of the tetrahedral army engaged in its holocaust of destruction, the remaining half fed and spawned in the full blaze of the sun. With every day dozens of square miles were added to their hellish domain and thousands of tetrahedra to their unnatural army. For now we could see that more and more of them were taking the second course, were splitting into hosts of tiny, three-inch creatures which, within a few days’ time, had swelled to full size and on the following day could spawn anew!

The yelling circle was thinning fast, yet they had not realized the futility of their attack when suddenly the tetrahedra deserted quiet defense for active combat!

The cause was evident. Five Indians on the upslope had shoved over the cliff a huge rounded boulder that bounded like a live thing among the rocks and crashed fufl into the side of a great eight-foot tetrahedron, splintering its flinty flank and freeing the pent-up energy in a blinding torrent of blue flame that cascaded over the nearby ledges, fusing them into a white-hot, smoking pool of molten lava that glowed evilly in the ill-lit gloom! It was the last straw! The mad attack had become a thing of real menace to the tetrahedra, and they sprang into swift retribution. From their apexes they flashed out the flaming yellow streaks of destruction.

Ever since Marston had first mentioned Professor Hornby’s theory that the things were Mercutians, I had been trying to find some way of verifying it. Now that we were in semi-intimate terms with the tetrahedra, I wondered if I might not get them, somehow, to supply this evidence. I thought of stories I had read of interplanetary communication — of telepathy, of word-association, of sign-language. They had all seemed far-fetched to me, impossible of attainment, but I resolved to try my hand at the last.

There was some rather soft rock in the structure of the watch-tower, and as Valdez had rescued my tool kit from the plane, I had a hammer and chisel. With these, and a faulty memory, I set out to make a rough scale diagram of the inner planets, leaning a bit on the Professor’s theory. I cut circular grooves for the orbits of the four minor planets — Mercury, Venus, Earth, Mars — and dug a deep central pit. In this I set a large nugget of gold, found in the ruins of the fortress, for the Sun, and in the grooves a tiny black pebble for Mercury, a large white one for Venus, and a jade bead from the ruins for Earth. Earth had a very small white moon, in its own deep-cut spiral orbit. Mars was a small chunk of rusty iron with two grains of sand for moons. I had a fair-sized scale, and there was no room for more.

Now I was prepared to attempt communication with the tetrahedra, but I wanted more than one diagram to work with. Consequently I attempted a map of Earth, with hollowed oceans and low mountain-ridges.

A cloud-burst, it would be called in the United States. The heavens opened in the night, and water fell in torrents, streaming from every angle of the rock, standing in pools wherever a hollow offered itself, drenching us and the world through and through. Day came, but there was no sun for the tetrahedra to feed on. Nor were they thinking of feeding, for very definite peril threatened them. To the tetrahedra, water was death!

As I have said, their fires had flaked huge slabs of rock from the walls of the ravine leading from the high-walled valley where they slept, choking its narrow throat with shattered stone. And now that the mountain slopes, shorn of soil and vegetation, were pouring water into its bed, the stream that had carved that ravine found its course dammed — rose against it, poured over it, but not until the valley had become a lake, a lake where only the two pearly spheres floated against the rocky wall, the thousands of tetrahedra gone forever — dissolved!

Water was death to them — dissolution! Only in the shelter of the spheres was there safety, and they were long since crowded. The hordes of the tetrahedral monsters perished miserably in the night, before they could summon the forces that might have spun them a fiery canopy of arching lightnings that would drive the water back in vapor and keep them safely dry beneath. A hundred had come in the twin spheres. A hundred thousand had been born. A bare hundred remained.

(ed note: Our heroes use the the map of the solar system to explain to the tetrahedrons that [a] water is death to tetrahedrons, [b] Earth is 75% water, [c] right now Earth is in the dry season. Implication is that if the cloud-burst that killed 99.9% of their invasion force happens in the dry season, the wet season will be utterly deadly. Perhaps it would make more sense to go invade Mars?)

From TETRAHEDRA OF SPACE by P. Schuyler Miller (1931)

Electronic Life

What if an alien ecosystem is not composed of organic life based on chemistry, but instead on cybernetic life based on electronics?

In science fiction there are two main trends:

  • a high tech organic species creates a robotic species capable of reproduction.
  • a sufficiently weird planet manages to naturally evolve a native species whose biology is based on electronics instead of organics.

In the first case there are many possiblites.

The parent organic species might have given the robotic species some artificial intelligence from the start. Then the robots break free of their parent's control:

  • The organic parents evolve into higher forms and depart for another dimension or something, abandoning the robots to their own devices

  • The organic parents decline into decadence and become extinct, leaving the robots to inherit their world

  • The robots decide it is against their own self-interest to obey the orders of their squishy organic parents, and wander off to form a Robot Republic.

  • The robots go full Skynet on the parent organic species. This can be from the worker robots deciding to break free of organic control by extermination, or because the robots were originally some kind of planetary attack weapon that lost the ability to distinguish friend from foe (see Beserkers and related concepts).

Alternatively the robotic species started out as von Neumann probes or other self-replicating machine sent by the organic parents to explore the universe. These could unexpectedly evolve, as replication errors creep into the internal blueprints. Cautious organic parents will put in a fail-safe, forcing the von Neumann probe to die if it discovers blueprint replication errors. But that only works until there is some damage to the replication error detector component (or simultaneous damage to the detector and to the detector blueprint).

In the exploration case it isn't so much the case that the machine broke free of their parent's control so much as the parents are thousands of light year away.

Beserkers are dedicated to seeking out and destroying all life. But almost as bad are runaway von Neumanns who just want to fill the universe with copies of themselves, but who view planets and living creatures as convenient sources of chemical elements. Unlike berserkers, the decision to kill you is nothing personal, they just need to eat you for the raw materials.

Robotic evolution will kick into high gear if intelligent robots gain the ability to self-modify their own blueprints. Instead of millions of years worth of random mutations required to adapt to new challenges, they can adapt in a single generation.

von Neumann machines are very popular in science fiction.

Jack: You're a motorcycle, Arcee. Shouldn't you know how to build a motorcycle engine?
Arcee: You're a human, Jack. Can you build me a small intestine?
Transformers Prime, "Masters and Students"

Mechanical Lifeforms are a race of robots or robot-like creatures that are also considered a honest-to-goodness species of living things. They're just like your everyday living organisms, except they happen to have metal for skin, wires for nerves, and so on. They're often silicon-based as well.

These may be robotic animals, plants, micro-organisms, or sapient creatures. If they are sapient, they would never wish to Become a Real Boy because, as far as they can see, they are as real as that boy. May also form a Robot Republic.

The origin of such creatures is best left unexplained - they were never built by another race (well, that anyone knows of), and if they were, it would be treated as a very shocking revelation, due to the audience accepting their mechanical nature as-is. And should any creators arrive to cart them back, expect them to react just the same as humans would (i.e. much anger, denial, violence, and maybe a speech or two about free will).

Contrast Organic Technology, which are machines that happen to be organic in nature. Also see Mechanical Monster and Mechanical Evolution.

TV Trope page for list of examples)

"The Cylons were created by man.
They rebelled.
They evolved.
There are many copies.
And they have a plan."

Battlestar Galactica

Mechanical Evolution is the tendency in speculative fiction to apply the idea of biological evolution to mechanical devices, wherein later versions of the devices become progressively more suited to their niche (or more likely just progressively better at everything). This is frequently used to explain the presence of Mechanical Lifeforms or Ridiculously Human Robots.

It is seldom shown as the equivalent of the biological process; rather, the mechanical species will be shown to actively design their own successors, or even "evolve" within their current generation through self-modification. This is similar to real-life design, which is in a sense an evolutionary process; success is defined by market factors, testing and other pressures; successive designs build on those before them and attempt to improve or refine them to better fit the given application. With mechanical creatures the "market" becomes society; a common result is a rigid caste system where various machines are built to specialise in particular applications. The most important caste is likely to also be the most humanoid, or be a Master Computer.

This trope often appears in A.I. Is a Crapshoot and/or Robot War story arcs, as a justification for why the machines want to Kill All Humans. More serious authors will try to justify the Mechanical Evolution with Applied Phlebotinum like Nanomachines or self-learning algorithms; less serious authors will simply toss out the words "Mechanical Evolution" and leave it at that.

If the setting also features a Robot Religion (especially of a Thank the Maker variety), expect jokes about them not believing in Mechanical Evolution (or perhaps the other way around).

No one ever seems to compare the advancement of machines to the theory of Lamarckian evolution, which says that traits acquired by an organism over its life will be passed on to the child. Though wrong when talking about organic evolution, this makes perfect sense for mechanical evolution. If an upgrade to an existing model of robot is developed it can be incorporated as standard into future robots of that model when they are created. The Lamarck comparison is probably taken out because the writers assume the viewers don't know who Lamarck is.

A subtrope of Hollywood Evolution. See also Mechanical Lifeforms, Ridiculously Human Robots, and Artificial Human. Compare Grew Beyond Their Programming.

TV Trope page for list of examples)



In theory, a self-replicating spacecraft could be sent to a neighbouring planetary system, where it would seek out raw materials (extracted from asteroids, moons, gas giants, etc.) to create replicas of itself. These replicas would then be sent out to other planetary systems. The original "parent" probe could then pursue its primary purpose within the star system. This mission varies widely depending on the variant of self-replicating starship proposed.

Given this pattern, and its similarity to the reproduction patterns of bacteria, it has been pointed out that von Neumann machines might be considered a form of life. In his short story, "Lungfish", David Brin touches on this idea, pointing out that self-replicating machines launched by different species might actually compete with one another (in a Darwinistic fashion) for raw material, or even have conflicting missions. Given enough variety of "species" they might even form a type of ecology, or – should they also have a form of artificial intelligence – a society. They may even mutate with untold thousands of "generations".

The first quantitative engineering analysis of such a spacecraft was published in 1980 by Robert Freitas, in which the non-replicating Project Daedalus design was modified to include all subsystems necessary for self-replication. The design's strategy was to use the probe to deliver a "seed" factory with a mass of about 443 tons to a distant site, have the seed factory replicate many copies of itself there to increase its total manufacturing capacity, over a 500-year period, and then use the resulting automated industrial complex to construct more probes with a single seed factory on board each.

It has been theorized that a self-replicating starship utilizing relatively conventional theoretical methods of interstellar travel (i.e., no exotic faster-than-light propulsion, and speeds limited to an "average cruising speed" of 0.1c.) could spread throughout a galaxy the size of the Milky Way in as little as half a million years.

Implications for Fermi's paradox

In 1981, Frank Tipler put forth an argument that extraterrestrial intelligences do not exist, based on the absence of von Neumann probes. Given even a moderate rate of replication and the history of the galaxy, such probes should already be common throughout space and thus, we should have already encountered them. Because we have not, this shows that extraterrestrial intelligences do not exist. This is thus a resolution to the Fermi paradox – that is, the question of why we have not already encountered extraterrestrial intelligence if it is common throughout the universe.

A response came from Carl Sagan and William Newman. Now known as Sagan's Response, it pointed out that in fact Tipler had underestimated the rate of replication, and that von Neumann probes should have already started to consume most of the mass in the galaxy. Any intelligent race would therefore, Sagan and Newman reasoned, not design von Neumann probes in the first place, and would try to destroy any von Neumann probes found as soon as they were detected. As Robert Freitas has pointed out, the assumed capacity of von Neumann probes described by both sides of the debate are unlikely in reality, and more modestly reproducing systems are unlikely to be observable in their effects on our Solar System or the Galaxy as a whole.

Another objection to the prevalence of von Neumann probes is that civilizations of the type that could potentially create such devices may have inherently short lifetimes, and self-destruct before so advanced a stage is reached, through such events as biological or nuclear warfare, nanoterrorism, resource exhaustion, ecological catastrophe, or pandemics.

Simple workarounds exist to avoid the over-replication scenario. Radio transmitters, or other means of wireless communication, could be used by probes programmed not to replicate beyond a certain density (such as five probes per cubic parsec) or arbitrary limit (such as ten million within one century), analogous to the Hayflick limit in cell reproduction. One problem with this defence against uncontrolled replication is that it would only require a single probe to malfunction and begin unrestricted reproduction for the entire approach to fail – essentially a technological cancer – unless each probe also has the ability to detect such malfunction in its neighbours and implements a seek and destroy protocol (which in turn could lead to probe-on-probe space wars if faulty probes first managed to multiply to high numbers before they were found by sound ones, which could then well have programming to replicate to matching numbers so as to manage the infestation). Another workaround is based on the need for spacecraft heating during long interstellar travel. The use of plutonium as a thermal source would limit the ability to self-replicate. The spacecraft would have no programming to make more plutonium even if it found the required raw materials. Another is to program the spacecraft with a clear understanding of the dangers of uncontrolled replication.

Applications for self-replicating spacecraft

The details of the mission of self-replicating starships can vary widely from proposal to proposal, and the only common trait is the self-replicating nature.

Von Neumann probes

A von Neumann probe is a spacecraft capable of replicating itself. The concept is named after Hungarian American mathematician and physicist John von Neumann, who rigorously studied the concept of self-replicating machines that he called "Universal Assemblers" and which are often referred to as "von Neumann machines". While von Neumann never applied his work to the idea of spacecraft, theoreticians since then have done so.

If a self-replicating probe finds evidence of primitive life (or a primitive, low level culture) it might be programmed to lie dormant, silently observe, attempt to make contact (this variant is known as a Bracewell probe), or even interfere with or guide the evolution of life in some way.

Physicist Paul Davies of Arizona State University has even raised the possibility of a probe resting on our own Moon, having arrived at some point in Earth's ancient prehistory and remained to monitor Earth (see Bracewell probe), which is very reminiscent of Arthur C. Clarke's The Sentinel.

A variant idea on the interstellar von Neumann probe idea is that of the "Astrochicken", proposed by Freeman Dyson. While it has the common traits of self-replication, exploration, and communication with its "home base", Dyson conceived the Astrochicken to explore and operate within our own planetary system, and not explore interstellar space.

Oxford-based philosopher Nick Bostrom discusses the idea that future powerful superintelligences will create efficient cost-effective space travel and interstellar Von Neumann probes.


A variant of the self-replicating starship is the Berserker. Unlike the benign probe concept, Berserkers are programmed to seek out and exterminate lifeforms and life-bearing exoplanets whenever they are encountered.

The name is derived from the Berserker series of novels by Fred Saberhagen which describe a war between humanity and such machines. Saberhagen points out (through one of his characters) that the Berserker warships in his novels are not von Neumann machines themselves, but the larger complex of Berserker machines – including automated shipyards – do constitute a von Neumann machine. This again brings up the concept of an ecology of von Neumann machines, or even a von Neumann hive entity.

It is speculated in fiction that Berserkers could be created and launched by a xenophobic civilization (see Anvil of Stars, by Greg Bear or could theoretically "mutate" from a more benign probe. For instance, a von Neumann ship designed for terraforming processes – mining a planet's surface and adjusting its atmosphere to more human-friendly conditions – might malfunction and attack inhabited planets, killing their inhabitants in the process of changing the planetary environment, and then self-replicate and dispatch more ships to attack other planets.

Replicating seeder ships

Yet another variant on the idea of the self-replicating starship is that of the seeder ship. Such starships might store the genetic patterns of lifeforms from their home world, perhaps even of the species which created it. Upon finding a habitable exoplanet, or even one that might be terraformed, it would try to replicate such lifeforms – either from stored embryos or from stored information using molecular nanotechnology to build zygotes with varying genetic information from local raw materials.

Such ships might be terraforming vessels, preparing colony worlds for later colonization by other vessels, or – should they be programmed to recreate, raise, and educate individuals of the species that created it – self-replicating colonizers themselves. Seeder ships would be a suitable alternative to Generation ships as a way to colonize worlds too distant to travel to in one lifetime.

From the Wikipedia entry for SELF-REPLICATING SPACECRAFT

gosh but like we spent hundreds of years looking up at the stars and wondering “is there anybody out there” and hoping and guessing and imagining

because we as a species were so lonely and we wanted friends so bad, we wanted to meet other species and we wanted to talk to them and we wanted to learn from them and to stop being the only people in the universe

and we started realizing that things were maybe not going so good for us— we got scared that we were going to blow each other up, we got scared that we were going to break our planet permanently, we got scared that in a hundred years we were all going to be dead and gone and even if there were other people out there, we’d never get to meet them

and then

we built robots?

and we gave them names and we gave them brains made out of silicon and we pretended they were people and we told them hey you wanna go exploring, and of course they did, because we had made them in our own image

and maybe in a hundred years we won’t be around any more, maybe yeah the planet will be a mess and we’ll all be dead, and if other people come from the stars we won’t be around to meet them and say hi! how are you! we’re people, too! you’re not alone any more!, maybe we’ll be gone

but we built robots, who have beat-up hulls and metal brains, and who have names; and if the other people come and say, who were these people? what were they like?

the robots can say, when they made us, they called us discovery; they called us curiosity; they called us explorer; they called us spirit. they must have thought that was important.

and they told us to tell you hello.

by Hannah Weverka (2014)

The guide waved at the next display, "And this... this is a special piece. You're lucky! We're only allowed to show you this at one solar position of one particular planet. Silence now, here it comes..."

A soft, tinny music filled the suddenly silent space by the display. It was awkward, almost hesitant, as if it wasn't quite sure it was meant to be music at all. And yet, the crowd stared, straining for the notes, silent and still until silence again filled the hall. With the sound gone, the audience again focused on their guide and personal translators.

"Ah. That never gets old. This piece is more than a nine-hundred year-old relic, it is a symbol. The young often ask why there are so few requirements to enter the Galactic Union. This is why. This is piece of a culture so impatient to see the stars it hurled devices out into them. Not so different than many of our cultures, yes? Ah, but see, this planet was still in its infancy, at war with itself, a candle still at risk of snuffing itself out. And yet, they sent this to a nearby, uninhabitable planet. Just to see." The guide paused, "But that is not the most wondrous thing."

"The device you see here, is not autonomous. A simple, 'robot' that took commands directly from the home planet and relayed back information. A machine, nothing more." Again a pause, "And yet. This culture programmed this simple, data gathering machine, to make music. And not just any music, but a song played when the solar position approximated that of an individual's genesis."

"The humans have been members of the Galactic Union for over eight-hundred years. They bear little resemblance to the ones who built this device, which they named — NAMED, Opportunity. But they still have that unique trait they brought to the Union, as all species bring something unique. Though the humans had not realized it yet themselves, as they gave their machines names of hope and flung them into the stars, programmed them to play music, and mourned them when they went cold, the Union saw their potential."

The guide waved an arm to encompass the room, "Yes. Humans. Our great peacemakers, were once at risk of destroying themselves. Yet even then, their empathy was so great they mourned not only for a species not their own, but for an inanimate machine that 'survived' more than sixty times longer than expected. They listened, long after it had passed into silence, waiting to make sure it did not pass alone, as they would a living family member."

The guide turned back to the machine, now silent again, "And the humans returned to recover this simple machine and still, nine-HUNDRED years later, allow us only to send the command to play this music, 'happy birthday' when the sun of their homeworld approximates the position it did then. They are... a special race to be sure. And this 'Opportunity' is a symbol of that. Antiquated and clumsy technology, but a symbol of an empathy deep enough to unite the Galactic Union, and keep it strong, peaceful, and expanding."

The crowd paused, considering, then moved on to the next museum exhibit, leaving one lone figure staring at the display.

Softly, even softer than the music, it spoke. "Of course we came back. Good job, Oppy. Who's the best little rover?" The figure smiled, waved as if at the silent machine, and turned to follow the group.

     The above is an unedited first-draft written as I watched messages spread across the web of Opportunity's last message, "My battery is low and it's getting dark." and a universal mourning.
     But it struck me as people were sad that Oppy passed, "alone" that it was the opposite. Like a beloved pet, we sat with Oppy as it went to sleep for the final time. We listened, long after, to be sure that it didn't wake up alone.
     And it struck me that that is a truly AMAZING thing, to invest so much, to care SO much about something inanimate. And so, I wrote this. Because I see a lot of hope in this. If we can just get past all the other stuff, humans are AMAZING.
     And yeah, if we get to the stars? You know we're totally gonna go back for Oppy. 'Cause humans are big emotional saps. And maybe that's our strength.
Tweet by @ScienceVet2 (2019)

(ed note: The hexagonals are mechanical aliens)

The hostility radiating from the second expedition soon drove the hexagonals back into their ship and away. The fresh humans from Earth felt something gut-level and instinctive, a reaction beyond words. The hexagonals retreated without showing a coherent reaction. They simply turned and walked away, holding to the four centimeter spacing. The 1.27 second flicker stopped and they returned to a bland expression, alert but giving nothing away.

The vision these hexagonals conveyed was austere, jarring… and yet, plainly intended to be inviting.

The magnitude of their failure was a measure of the abyss that separated the two parties. The hexagonals were now both more and less than human.

The hexagonals left recurrent patterns that told much, though only in retrospect. Behind the second expedition’s revulsion lay a revelation: of a galaxy spanned by intelligences formal and remote, far developed beyond the organic stage. Such intelligences had been born variously, of early organic forms, or of later machine civilizations which had arisen upon the ashes of extinct organic societies. The gleam of the stars was in fact a metallic glitter. This vision was daunting enough: of minds so distant and strange, hosted in bodies free of sinew and skin. But there was something more, an inexpressible repulsion.

A nineteenth-century philosopher, Goethe, had once remarked that if one stared into the abyss long enough, it stared back. This proved true. A mere moment’s lingering look, quiet and almost casual, was enough. The second expedition panicked. It is not good to stare into a pit that has no bottom.

From A DANCE TO STRANGE MUSICS by Gregory Benford (1998)

      Any intelligent aliens that humans manage to contact probably won't look much like you or me, or the squid-like creatures in the new film "Arrival."
     If an extraterrestrial species becomes advanced enough to send signals Earthlings can pick up, it will likely shed its traditional biological trappings and become a form of machine intelligence in rather short order, said veteran alien hunter Seth Shostak.
     To make his case, Shostak pointed to the path that humanity appears to be on. The human species invented the radio around 1900 and the computer in 1945, and it's already manufacturing relatively cheap devices with greater computing power than the human brain.
      The development of true, strong artificial intelligence (AI) is therefore not too far off, experts have said. The famous futurist Ray Kurzweil, for example, has pegged 2045 as the year this world-changing "singularity" will hit.
      "But maybe it takes to 2100, or 2150, or 2250. It doesn't matter," Shostak said in September during a presentation at the Dent:Space conference in San Francisco. "The point is, any society that invents radio, so we can hear them, within a few centuries, they've invented their successors. And I think that's important, because the successors are machines."
      AI will interface with people's bodies for a while, but eventually humans will abandon the wetware and go fully digital, Shostak predicted.
      "It'll be like — you build a four-cylinder engine. You put it in a horse to get a faster horse. And pretty soon you say, 'Look, let's get rid of the horse part and just build a Maserati,'" said Shostak, an astronomer at the Search for Extraterrestrial Intelligence (SETI) Institute in Mountain View, California. "So that's probably what's going to happen."
      Humans' machine selves will get smarter and more capable incredibly quickly, he added. Humanity's present intelligence is the result of 4 billion years of Darwinian evolution, which uses random variation as its raw material and is not directed toward any particular goal. But the evolution of machine intelligence will be engineered and efficient, Shostak said.
      "Once you invent a thinking machine, you say, 'Invent something better than you are,' and you build that. 'Design something better than you are,' and you build that, and so forth," he said.
      This idea has serious implications for the search for intelligent alien life. Unlike Earth organisms, super-advanced extraterrestrial machines would not require water or other chemicals to survive, so they would not be tied to their ancestors' home worlds tightly at all, Shostak said. And journeying tremendous distances would not be a big deal to these machines, provided they could access enough energy and raw materials to keep repairing themselves over the millennia, he said.
      "We continue to look in the directions of star systems that we think have habitable words, that have planets where biology could cook up and eventually turn into something clever like you guys," he told the Dent:Space audience. "But I don't think it's going to be that way."
      Shostak said he isn't counseling his fellow SETI astronomers to stop investigating potentially Earth-like planets such as Proxima b, a recently discovered world that lies just 4.2 light-years away. (And simple life-forms could still inhabit such worlds even if their most intelligent inhabitants went digital and departed long ago, Shostak said.) But it may be a good idea to expand the search to regions of space that would seemingly be attractive to digital life-forms, he said — for example, places with lots of available energy, such as the centers of galaxies.
      "That may be where the really clever beings are," Shostak said.
      "Maybe what we ought to do is look at places on the sky that connect two places where there is a lot of energy," in an attempt to intercept communications between alien machines, Shostak added.
      "This is my message to you: We're looking for analogues of ourselves, but I don't know that that's the majority of the intelligence in the universe," Shostak concluded. "I'm willing to bet it's not."


      Ursula Fleming stared as the asteroid's slow rotation brought ancient, shattered ruins into view below. “Lord, what a mess," she said, sighing.
     She had been five years in the Belt, exploring and salvaging huge alien works, but never had she beheld such devastation as this.
     Only four kilometers away, the hulking asteroid lay nearly black against the starry band of the Milky Way, glistening here and there in the light of the distant sun. The rock stretched more than two thousand meters along its greatest axis. Collisions had dented, cracked, and cratered it severely since it had broken from its parent body, more than a billion years ago.
     On one side it seemed a fairly typical carbonaceous planetoid, like millions of others orbiting out here at the edge of the Belt. But this changed as the survey ship Hairy Thunderer orbited around the nameless hunk of rock and frozen gases. Then the sun's vacuum brilliance cast lonely, sharp shadows across ruined replication yards jagged, twisted remnants of a catastrophe that had taken place back when dinosaurs still roamed the Earth.
     “Gavin!” she called over her shoulder. “Come down here! You've got to see this!"
     In a minute her partner floated through the overhead hatch, flipping in midair. There was a faint click as his feet contacted the magnetized floor.
     “All right, Urs. What's to see? More murdered babies to dissect and salvage? Or have we finally found a clue to who their killers were?"
     Ursula only gestured toward the viewing port. Her partner moved closer and stared. Highlights reflected from Gavin's glossy features as the ship's searchlight swept the shattered scene below.
     "Yep." Gavin nodded at last. “Dead babies again. Fleming Salvage and Exploration ought to make a good price off each little corpse."
     Ursula frowned. “Don't be morbid, Gavin. Those are unfinished interstellar probes, destroyed ages ago before they could be launched. We have no idea whether they were sentient machines like you, or just tools, like this ship. You of all people should know better than to go around anthropomorphizing alien artifacts." Gavin's grimace was an android's equivalent of a sarcastic shrug. “If I use ‘morbid' imagery, whose fault is it?"

     After centuries of wondering, mankind has at last realized an ancient dream. We have discovered proof of civilizations other than our own.
     In the decade we have been exploring the Outer Belt in earnest, humanity has uncovered artifacts from more than forty difierent cultures … all represented by robot starships … all apparently long dead.
     What happened here?
     And why were all those long-ago visitors robots?
     Back in the late twentieth century, some scholars had begun to doubt that biological beings could ever adapt well enough to space travel to colonize more than a little corner of the Milky Way. But even if that were so, it would not prevent exploration of the galaxy. Advanced intelligences could send out mechanical representatives, robots better suited to the tedium and dangers of interstellar spaceflight than living beings.
     Alter all, a mature, long-lived culture could afford to wait thousands of years for data to return from distant star systems.
     Even so, the galaxy is a big place. To send a probe to every site of interest could impoverish a civilization.
     The most efficient way would be to dispatch only a few deluxe robot ships, instead of a giant fleet of cheaper models. Those first probes would investigate nearby stars and planets. Then, after their exploration was done, they would use local resources to make copies of themselves.
     The legendary John Von Neumann first described the concept. Sophisticated machines, programmed to replicate themselves from raw materials, could launch their "daughters" toward still farther stellar systems. There, each probe would make still more duplicates, and so on.
     Exploration could proceed far faster than if carried out by living beings. And after the first wave there would be no further cost to the home system. From then on information would pour back, year alter year, century after century.
     It sounded so logical. Those twentieth-century scholars calculated that the technique could deliver an exploration probe to every star in our galaxy a mere three million years after the first was launched — an eyeblink compared to the age of the galaxy.
     But there was a rub! When we humans discovered radio and then spaceflight, no extra-solar probes announced themselves to say hello. There were no messages welcoming us into the civilized sky.
     At first those twentieth-century philosophers thought there could only be one explanation …
     Let us re-create the logic of those philosophers of the last century, in an imagined conversation.
     “We will certainly build robot scouts someday. Colonization aside, any truly curious race could hardly resist the temptation to send out mechanical emissaries, to say ‘hello’ to strangers out there and report back what they find. The first crude probes to leave our solar system — the Voyagers and Pioneers — demonstrated this basic desire. They carried simple messages meant to be deciphered by other beings long after the authors were dust.
     “Anyone out there enough like us to be interesting would certainly do the same.
     “And yet, if self-reproducing probes are the most efficient way to explore, why haven't any already said hello to us? It must mean that nobody before us ever attained the capability to send them!
     “ We can only conclude that we are the first curious, gregarious, technically competent species in the history of the Milky Way. "
     The logic was so compelling that most people gave up on the idea of contact, especially when radio searches turned up nothing but star static.
     Then humanity spread out beyond Mans and the Inner Belt, and we stumbled onto the Devastation.
     The story is still sketchy, but we can already begin to guess some of what happened out here, long before mankind was a glimmer on the horizon.
     Long ago the first " Von Neumann type" interstellar probe arrived in our solar system. It came to explore and perhaps report back across the empty light-years. That earliest emissary found no intelligent life here, so it proceeded to its second task.
     It mined an asteroid and sent newly made duplicates of itself onward to other stars. The original then remained behind to watch and wait, patient against the day when something interesting might happen in this little corner of space.
     As the epochs passed, new probes arrived, representatives of other civilizations. Once their own replicas had been launched, the newcomers joined a small but growing community of mechanical ambassadors to this backwater system — waiting for it to evolve somebody to say hello to.
     We have found a few of these early probes, remnants of a lost age of innocence in the galaxy.
     More precisely, we have found their blasted remains.
     Perhaps one day the innocent star emissaries sensed some new entity enter the solar system. Did they move to greet it, eager for gossip to share? Like those twentieth-century thinkers, perhaps they believed that replicant probes would have to be benign.
     But things had changed. The age of innocence was over. The galaxy had grown up; it had become nasty.
     The wreckage we are finding now — whose salvage drives our new industrial revolution — was left by an unfathomable war that stretched across vast times, and was fought by entities to whom biological life was a nearly forgotten oddity.

Seeder type probe. Those carry DNA encoded in their computer banks and upon arrival at a solar system with habitable planets they genetically engineer biological creatures suitable for the planets. Ursula is looking at a wall of carved pictographs made by the Seeder for the benefit of the biologicals it created. Said biologicals sad mummified bodies litter the floor. Apparently another probe arrived and bombed the place.)

     In the feeble gravity Ursula's arms hung out in front of her, like frames encompassing the picture she was trying to understand.
     The creatures must have had a lot of time while the battles raged outside their deep catacombs, for the wall carvings were extensive and intricate, arrayed in neat rows and columns. Separated by narrow lines of peculiar chiseled text were depictions of suns and planets and great machines.
     Most of all, pictographs of great machines covered the wall.
     They had agreed that the first sequence appeared to begin at the lower left, where a two-dimensional image of a starprobe could be seen entering a solar system — presumably this one — its planets’ orbits sketched out in thin lines upon the wall. Next to that initial frame was a portrayal of the same probe, now deploying subdrones, taking hold of a likely planetoid, and beginning the process of making replicas of itself.
     Eight replicas departed the system in the following frame. There were four symbols below the set of stylized child probes … Ursula could read the binary symbol for eight, and there were eight dots, as well. It didn't take much imagination to tell that the remaining two symbols also stood for the same numeral.
     Ursula made a note of the discovery. Translation had begun already. Apparently this type of probe was programmed to make eight copies of itself, and no more. That settled a nagging question that had bothered Ursula for years.
     If sophisticated self-replicating probes had been roaming the galaxy for aeons, why was there any dead matter left at all? It was theoretically possible for an advanced enough technology to dismantle not only asteroids but planets and stars, as well. If the replicant probes had been as simplemindedly voracious as viruses, they would by now have gobbled the entire galaxy! There would be nothing left in the sky but a cloud of innumerable starprobes … reduced to preying on each other for raw materials until the entire pathological system fell apart in entropy death.
     But that fate had been avoided. This type of mother probe showed how it could be done. It was programmed to make a strictly limited number of copies of itself.
     This type of probe was so programmed, Ursula reminded herself.
     In the final frame of the first sequence, after the daughter probes had been dispatched to their destinations, the mother probe was shown moving next to a round globe — a planet. A thin line linked probe and planet. A vaguely humanoid figure, resembling in caricature the mummies on the floor, stepped across the bridge to its new home.
     The first story ended there. Perhaps this was a depiction of the way things were supposed to have gone. But there were other sequences. Other versions of reality. In several, the mother probe arrived at the solar system to find others already there before it.
     Ursula realized that one of these other depictions must represent what had really happened here, so long ago. She breathed quickly, shallowly, as she traced out the tale told by the first of these.
     On the second row the mother probe arrived to find others already present. All the predecessors had little circular symbols next to them. In this case everything proceeded as before. The mother probe made and cast out its replicas, and went on to seed a planet with duplicates of the ancient race that had sent out the first version so long ago.
     “The little circle means those other probes are benign," Ursula muttered to herself.
     Gavin stepped back and looked at the scene she pointed to. “What are the little symbols beside these machines?"
     “They mean that those types won't interfere with this probe's mission."
     Gavin was thoughtful for a moment. Then he reached up and touched the next row above.
     “Then this crosslike symbol…?" He paused, examining the scene. “It means that there were other types that would object," he said, answering his own question.
     Ursula nodded. The third row showed the mother probe arriving once again, but this time amid a crowd of quite different machines, each accompanied by a glyph faintly like a crisscross tong sign. In that sequence the mother probe did not make replicates. She did not seed a planet. Her fuel used up, unable to flee the system, she found a place to hide, behind the star, as far from the others as possible.
     “She's afraid of them," Ursula announced. She expected Gavin to accuse her of anthropomorphizing, but her partner was silent, thoughtful. Finally, he nodded. “I think you're right."
     He pointed. “Look how each of the little cross or circle symbols are subtly different."
     "Yeah." She nodded, sitting forward on the gently humming drone. “Let's assume there were two basic types of Von Neumann probes loose in the galaxy when this drawing was made. Two different philosophies, perhaps. And within each camp there were differences, as well."
     She gestured to the far right end of the wall. That side featured a column of sketches, each depicting a different variety of machine, every one with its own cross or circle symbol. Next to each was a pictograph.
     Some of the scenes were chilling.
     Gavin shook his head, obviously wishing he could disbelieve. “But why? Von Neumann probes are supposed to … to …"
     "To what?" Ursula asked softly, thoughtfully. “For years men assumed that other races would think like us. We figured they would send out probes to gather knowledge, or maybe say hello. There were even a few who suggested that we might someday send out machines like this mother probe, to seed planets with humans, without forcing biologicals to actually travel interstellar space.
     "Those were the extrapolations we thought of, once we saw the possibilities in self-replicating probes. We expected the aliens who preceded us in the galaxy would do the same.
     “But that doesn't exhaust even the list of human motivations, Gavin. And there may be concepts other creatures invented which to us would be unimaginable!"
     She stood up suddenly and drifted above the dusty floor before the feeble gravity finally pulled her down in front of the chiseled wall. Her gloved hand touched the outlines of a stone sun.
     “Let's say a lot of planetary races evolve like we did on Earth, and discover how to make smart, durable machines capable of interstellar flight and replication. Would all such species be content just to send out emissaries?"
     Gavin looked around at the silent, still mummies. “Apparently not," he said.
Ursula turned and smiled. "In recent years we've given up on sending our biological selves to the stars. Oh, it'd be possible, marginally, but why not go instead as creatures better suited to the environment? That's a major reason we developed types of humans like yourself, Gavin."     Still looking downward, her partner shook his head. “But other races might not give up the old dream so easily."
     “No. They would use the new technology to seed far planets with duplicates of their biological selves. As I said, it's been thought of by Earthmen. I've checked the old databases. It was discussed even in the twentieth century."
     Gavin stared at the pictograms. “All right. That I can understand. But these others The violence! What thinking entity would do such things!"
     Poor Gavin, Ursula thought. This is a shock for him.
     “You know how irrational we biologicals can be sometimes. Humanity is trying to convert over to partly silico-cryo life in a smooth, sane way, but other races might not choose that path. They could program their probes with rigid commandments, based on logic that made sense in the jungles or swamps where they evolved, but which are insane in intergalactic space. Their emissaries would follow their orders, nevertheless, long after their makers were ashes and the homeworld dust."
     “Craziness! " Gavin shook his head.
     Ursula sympathized, she also felt a faint satisfaction. For all his ability to tap directly into computer memory banks, Gavin could never share her expertise in this area. He had been brought up to be human, but he would never hear within his own mind the faint, lingering echoes of the savannah, or see flickering shadows of the Old Forest … remnants of tooth and claw that reminded all biological men and women that the Universe owed nobody any favors. Or even explanations.
     “Some makers thought differently, obviously," she told him. “Some sent their probes out to be emissaries, or sowers of seeds and others, perhaps, to be doctors, lawyers, policemen."
     She once more touched an aeons-old pictograph, tracing the outlines of an exploding planet.
     “Still others," she said, “may have been sent forth to commit murder."

     In the article, she had laid out the story of the rock wall — carved in brave desperation by little biological creatures so very much like men. Many readers, probably, would sympathize with the alien colonists, slaughtered helplessly so many millions of years ago. And yet, without their destruction, mankind would never have come about. For even if the colonists were environmentalists who cared for their adopted world, evolution on Earth would have been changed forever if the colony had succeeded. Certainly human beings would not have evolved.
     Simple archaeological dating experiments had brought forth a chilling conclusion.
     Apparently, the mother probe and her replicas died at almost precisely the same moment as the dinosaurs on Earth went extinct — when a huge piece of debris from the probe war struck the planet, wreaking havoc on the Earth's biosphere.
     All those magnificent creatures, killed as innocent bystanders in a battle between great machines … a war which incidentally gave Earth's mammals their big chance.
     The wall carvings filled her mind — their depictions of violence and mayhem on a stellar scale. Ursula dimmed the remaining lights in the control room and looked out on the starfield.
     She found herself wondering how the war was going, out there.
     We're like ants, she thought, building our tiny castles under the tread of rampaging giants. And, like ants, we've spent our lives unaware of the battles going on overhead.
     Depicted on the rock wall had been almost every type of interstellar probe imaginable … and some whose purposes Ursula might never fathom.
     There were Berserkers, for instance — a variant thought of even in Twentieth-century science fiction. Thankfully, those wreckers of worlds were rare, according to the wall chart. And there were what appeared to be Policeman probes, as well, who hunted the berserkers down wherever they could be found.
     The motivations behind the two types were opposite. And yet Ursula was capable of understanding both. After all, there had always been those humans who were destroyer types … and those who were rescuers.
     Apparently both berserkers and police probes were already obsolete by the time the stone sketches had been hurriedly carved. Both types were relegated to the corners — as if they were creatures of an earlier, more uncomplicated day. And they were not the only ones. Probes Ursula had nicknamed Gobbler, Emissary, and Howdy also were depicted as simple, crude, archaic.
     But there had been others.
     One she had called Harm, seemed like a more sophisticated version of Berserker. It did not seek out life-bearing worlds in order to destroy them. Rather it spread innumerable copies of itself and looked for other types of probes to kill. Anything intelligent. Whenever it detected modulated radio waves, it would hunt down the source and destroy it.
     Ursula could understand even the warped logic of the makers of the Harm probes. Paranoid creatures who apparently wanted the stars only for themselves, and sent out their robot killers ahead to make sure there would be no competition awaiting them among the stars.
     Probes like that could explain the emptiness of the airwaves, which naive twentieth-century scientists had expected to be filled with interstellar conversation. They could explain why the Earth was never colonized by some starfaring race.
     At first Ursula had thought that Harm was responsible for the devastation here too, in the solar system's asteroid belt. But even Harm, she had come to realize, seemed relegated to one side of the rock carving, as if history had passed it by, as well.
     The main part of the frieze depicted machines whose purposes were not so simple to interpret. Perhaps the professional decipherers — archaeologists and cryptologists — would do better.
     Somehow, though, Ursula doubted they would have much luck.
     Man was late upon the scene, and a billion years was a long, long head start.
     She sat very still in the darkness of the control room, her breathing light in the faint pseudogravity of the throbbing rockets. Her own gentle pulse rocked her body to a regular rhythm, seeming to roll her slightly, perceptibly, with every beat of her heart.
     The ship surrounded her and yet, in a sense, it did not. She felt awash, as if the stars were flickering dots of plankton in a great sea … the sea that was the birthplace of all life.
     What happened here? she wondered. What really went by so many, many years ago?
     What is going on out there, in the galaxy, right now?
     The central part of the rock mural had eluded understanding. Ursula suspected that there were pieces of the puzzle which none of the archaeologists and psychologists, biological or cybernetic, would ever be able to decipher.
     We are like lunglish, trying to climb out of the sea long after the land has already been claimed by others, she realized. We've arrived late in the game.
     The time when the rules were simple had passed long ago. Out there, the probes had changed. They had evolved.
     In changing, would they remain true to the fundamental programming they had begun with? The missions originally given them? As we biologicals still obey instincts imprinted in the jungle and the sea?
     Soon, very soon, humans would begin sending out probes of their own. And if the radio noise of the last few centuries had not brought the attention of the galaxy down upon Sol, that would surely do it.
     We'll learn a lot from studying the wrecks we find here, but we had better remember that these were the losers! And a lot may have changed since the little skirmish ended here, millions of years ago.
     An image came to her, of Gavin's descendants — and hers — heading out bravely into a dangerous galaxy whose very rules were a mystery. It was inevitable, whatever was deciphered from the ruins here in the asteroid belt. Mankind would not stay crouched next to the fire, whatever shadows lurked in the darkness beyond. The explorers would go forth, machines who had been programmed to be human, or humans who had turned themselves into starprobes.
     It was a pattern she had not seen among the sad depictions on the rock wall. Was that because it was doomed from the start?
     Should we try something else, instead?
     Try what? What options has a fish who chose to leave the sea a billion years too late?
     Ursula blinked, and as her eyes opened again the stars diffracted through a thin film of tears. The million pinpoint lights broke up into rays, spreading in all directions.

From LUNGFISH by David Brin (1986)

The Mechanical Heirs of Man

Nebogipfel reconstructed something of the history of Humanity, across fifty million years. Much of this picture was tentative, he warned me—an edifice of speculation, founded on the few unambiguous facts he had been able to retrieve from the Information Sea.
     There had probably been several waves of star colonization by man and his descendants, said Nebogipfel. During our journey through time in the car, we had seen the launch of one generation of such ships, from the Orbital City.
     "It is not difficult to build an interstellar craft," he said, "if one is patient. I imagine your 1944 friends in the Palaeocene could have devised such a vessel a mere century or two after we left them. One would need a propulsion unit, of course — a chemical, ion or laser rocket; or perhaps a solar sail of the type we have observed. And there are strategies to use the resources of the solar system to escape from the sun. You could, for instance, swing past Jupiter, and use that planet's bulk to hurl your star-ship in towards the sun. With a boost at perihelion, you could very easily reach solar escape velocity."
     "And then one would be free of the solar system?"
     "At the other end a reverse of the process, the exploitation of the gravity wells of stars and planets, would be necessary, to settle into the new system. It might take ten, a hundred thousand years to complete such a journey, so great are the gulfs between the stars…"
     "A thousand centuries? But who could survive so long? What ship—the supply question alone—"
     "You miss the point," he said. "One would not send humans. The ship would be an automaton. A machine, with manipulative skills, and intelligence at least equivalent to a human's. The task of the machine would be to exploit the resources of the destination stellar system—using planets, comets, asteroids, dust, whatever it could find—to construct a colony."
     "Your automatons,"' I remarked, "sound rather like our friends, the Universal Constructors." He did not reply.
     "I can see the use of sending a machine to gather information. But other than that—what is the point? What is the meaning of a colony without humans?"
     "But such a machine could construct anything, given the resources and sufficient time," the Morlock said. "With cell synthesis and artificial womb technology, it could even construct humans, to inhabit the new colony. Do you see?"
     I protested at this—for the prospect seemed unnatural and abhorrent to me—until I remembered, with reluctance, that I had once watched the "construction" of a Morlock, in just such a fashion!
     Nebogipfel went on, "But the probe's most important task would be to construct more copies of itself. These would be fueled up—for example, with gases mined from the stars—and sent on, to further star systems.
     "And so, slow but steady, the colonization of the Galaxy would proceed."
     "But," I protested, "even so, it would take so much time. Ten thousand years to reach the nearest star, which is some light years away—"
     "And the Galaxy itself—"
     "Is a hundred thousand light years across. It would be slow," he said. "At least at first. But then the colonies would begin to interact with each other. Do you see? Empires could form, straddling the stars. Other groups would oppose the empires. The diffusion would slow further… but it would proceed, inexorably. By such techniques as I have described, it would take tens of millions of years to complete the colonization of the Galaxy — but it could he done. And, since it would be impossible to recall or redirect the mechanical probes, once launched, it would be done. It must have been done by now, fifty million years after the founding of First London." He went on, "The first few generations of Constructors were, I think, built with anthropocentric constraints incorporated into their awareness. They were built to serve man. But these Constructors were not simple mechanical devices—these were conscious entities. And when they went out into the Galaxy, exploring worlds undreamed of by man and redesigning themselves, they soon passed far beyond the understanding of Humanity, and broke the constraints of their authors… The machines broke free."
     "Great Scott," I said. "I can't imagine the military chaps of that remote Age taking to that idea very kindly."
     "Yes. There were wars… The data is fragmented. In any event, there could be only one victor in such a conflict."
     "And what of men? How did they take to all this?"
     "Some well, some badly." Nebogipfel twisted his face a little and swiveled his eyes. "What do you think? Humans are a diverse species, with multiple and fragmented goals—even in your day; imagine how much more diverse things became when people were spread across a hundred, a thousand star systems. The Constructors, too, rapidly fragmented. They are more unified as a species than man has ever been, by reason of their physical nature, but because of the much greater Information pool to which they have access—their goals are far more complex and varied."
     But, through all this conflict, Nebogipfel said, the slow Conquest of the stars had proceeded. The launching of the first star-ships, Nebogipfel said, had marked the greatest deviation we had yet witnessed from my original, unperturbed History. "Men—your friends, the New Humans—have changed everything about the world, even on a geological—a cosmic scale. I wonder if you can understand—"
     "I wonder if you understand, really, the meaning of a million years—or ten million—or fifty."
     "Well, I ought to. I've traversed through such intervals, with you, on the way to the Palaeocene and back."
     "But then we traveled through a History free of intelligence. Look—I have told you of interstellar migration. If Mind is given the chance to work on such scales—"
     "I've seen what can be done to the earth."
     "More than that—more than a single planet! The patient, termite-burrowing of Mind can undermine even the fabric of the universe," he whispered, "if given enough time... Even we only had a half-million years since the plains of Africa, and we captured a sun...
     "Look at the sky," he said. " Where are the stars? There is hardly a naked star in the sky. This is 1891, or thereabouts, remember: here can be no cosmological reason for the extinction of the stars, as compared to the sky of your own Richmond.
     "With my dark-evolved eyes, I can see a little more than you. And I tell you there is an array of dull-red pinpoints up there: it is infra-red radiation—heat."
     Then it struck me, with almost a physical force. "It is true," I said. " It is true... Your hypothesis of Galactic conquest. The proof of it is visible, in the sky itself! The stars must be cloaked about almost all of them—by artificial shells, like your Morlock Sphere." I stared out at the empty sky. "Dear God, Nebogipfel; human beings—and their machines—have changed Heaven itself!"
     "It was inevitable that it would come to this, once the first Constructor was launched—do you see?" I stared into that darkened sky, oppressed by awe. It was not so much the changed nature of the sky that astonished me so, but the notion that all this — all of it, to the furthest end of the Galaxy had been brought about by my shattering of History with the Time Machine!
     "I can see that men have gone from the earth," I said. "The climatic instability has done for us here. But somewhere"—I waved a hand—"somewhere out there must be men and women, in those scattered homes!"
     "No," he said. "The Constructors see everywhere, remember; they know everything. And I have seen no evidence of men like you. Oh, here and there you may find biological creatures descended from man—but as diverse, in their way, from your form of human as I am. And would you count me a man? And the biological forms are, besides, mostly degenerated…"
     "There are no true men? "
     "There are descendants of man everywhere. But nowhere will you find a creature who is more closely related to you than say—a whale or an elephant…"
     I quoted to him what I remembered of Charles Darwin: "Judging by the past, we may safely infer that not one living species will transmit its unaltered likeness to a distant futurity…"
     "Darwin was right," Nebogipfel said gently.
     That idea—that, of your type, you are alone in the Galaxy!—is hard to accept, and I fell silent, gazing up at the blanked-out stars. Was each of those great globes as densely populated as Nebogipfel's Sphere? My fertile mind began to inhabit those immense world-buildings with the descendants of true men—with fish-men, and bird-men, men of fire and ice—and I wondered what a tale might be brought back if some immortal Gulliver were able to travel from world to world, visiting all the diverse offspring of Humanity.
     "Men may have become extinct," Nebogipfel said. "Any biological species will, on a long enough time-scale, become extinct. But the Constructors cannot become extinct. Do you see that? With the Constructors, the essence of the race is not the form, biological or otherwise—it is the Information the race has gathered, and stored. And that is immortal. Once a race has committed itself to such Children, of Metal and Machines and Information, it cannot die out. Do you see that?"
     I turned to the prospect of White Earth beyond our window.
     I saw it, all right — I saw it all, only too well!
     Men had launched off these mechanical workers to the stars, to find new worlds, build colonies. I imagined that great argosy of light reaching out from an earth which had grown too small, going glittering up into the sky, smaller and smaller until the blue had swallowed them up… There were a million lost stories, I thought, of how men had come to know how to bear the strange gravitations, the attenuated and unfamiliar gases and all the stresses of space. It was an epochal migration—it changed the nature of the cosmos—but its launch was, perhaps, a last effort, a spasm before the collapse of civilization on the Mother World. In the face of the disintegration of the atmosphere, men on earth weakened, dwindled—we had the evidence of the pathetic mirror on the moon to show us that—and, at last, died. But then, much later, to the deserted earth, back came the colony machines man had sent out—or their descendants, the Universal Constructors, enormously sophisticated. The Constructors were descended from men, in a way and yet they had gone far beyond the boundaries of what men could achieve; for they had discarded old Adam, and all the vestiges of brutes and reptiles that had lurked in his body and spirit.
     I saw it all! The earth had been repopulated; and—not by man—but by the Mechanical Heirs of Man, who had returned, changed, from the stars.
     And all of this— all of it—had propagated out of the little colony which had been founded in the Palaeocene. Hilary had foreseen something of this, I thought: the re-engineering of the cosmos had unfolded from that little, fragile huddle of twelve people, that unremarkable seed planted fifty million years deep.
From THE TIME SHIPS by Stephen Baxter (1995)

Galactic North by Alastair Reynolds )

Greenfly was a human-designed terraforming machine programmed to break apart terrestrial planets and transform them into self-sufficient habitats filled with atmosphere, water and vegetation. Composed of swarms of Von Neumann robots, it was fully capable of self-replication and autonomous action. First seen aboard the lighthugger Hirondelle in 2303, it was taken by the pirate Run Seven in 2309, and unleashed some time after in the Ross 128 system.

Greenfly was programmed to adapt to the external challenges it encountered. Because of this, potential threats were assimilated, and used to improve and evolve greenfly. By 2931, the Nestbuilders, or rather their Slug overlords, were convinced that greenfly had been deliberately exposed to the Melding Plague to circumvent any limitations placed on its self-replication, and that they had assimilated a sample of Inhibitor machinery, as well. They were concerned that even their advanced military technology would be unable to counteract them.

Sometime after they encountered active resistance, greenfly began to categorize any intelligent life as a potential threat to its endless terraforming, and made destroying that life a priority. (i.e., greenfly had evolved into a paperclip maximizer)

By 40,000, greenfly had transformed vast swathes of the Milky Way galaxy.

The shadows, ostensibly alien entities claiming to originate from a parallel brane, came from a universe in which machines remarkably similar to greenfly had restructured multiple galaxies. This may be a coincidence, or may suggest that the shadows in fact exist in a future version of the "native" universe of humanity overtaken by greenfly.

From Revelation Space Wiki entry GREENFLY


This story starts in the year 2303, when Captain Irravel Veda of the lighthugger Hirondelle, her second-in-command Markarian, and some fraction of their Ultranaut crew are ambushed by pirates while engaged in an unexpected repair stopover in a cloud of rocks and cometary matter in the charted but uninhabited star system Luyten 726-8. She briefly considers activating the "Greenfly" terraforming Von Neumann machines being transported onboard, which she believes would easily be able to swarm and dismantle the pirate vessel and probably aid in repair as well. She rejects this option, however, and their ship is captured by the infamous terroristic pirate Run Seven. She is tortured to reveal the codes to the security protecting her ship's cargo – twenty thousand colonists' cryopreserved bodies – but refuses due to intense psychological conditioning that makes her view the cargo as her children and do anything to protect them.

She awakens aboard the mostly abandoned Hirondelle some time later, having no memory of the interrogation. She discovers that almost all of the colonists have been taken, while the handful that were left behind have been cut to pieces in order to acquire their tissues and implants; the valuable Greenfly machines they were transporting have also been stolen by Seven.

By 2658, Irravel has acquired a cloned body of herself. Markarian has disappeared with the remaining colonists and is fleeing aboard the pirates' ship Hideyoshi. Still under the influence of her Ultranaut conditioning, Irravel gives chase, interested in exacting revenge, rescuing the colonists, and learning why Markarian gave up the codes to their security. By 2931 she has followed him to a refuge among the "Nestbuilder" race, from whom she attempts to purchase advanced weapons technology in order to have the advantage against the Hideyoshi during the next encounter. However, the Nestbuilders and their symbiotic species, the Slugs, reveal that while she was travelling at high relativistic velocities, the Greenfly terraformers were unleashed around the star Ross 128 (the same star that Diadem orbits in "Glacial"), and have since malfunctioned, destroying the planets there and turning them into trillions of orbiting bio-domes filled with vegetation. The inhabitants of the star system failed to stop them and were apparently killed in the process. Irravel says that she cannot provide any information that would help the Nestbuilders/Slugs, and leaves on the trail of Markarian again. Mirsky dies an old woman in space in 3354. In their last conversation, they discuss the Greenfly, which they observe by now has begun spreading to other systems, destroying the intelligent societies it was designed to provide for. All attempts at containing the swarm have failed.

In 4161, Irravel stops at the Pleiades cluster and meets distant descendants of the Conjoiners living amongst a race known as the Islanders, who inhabit the planets in the star cluster. Markarian is still fleeing her. She learns that the Greenflies are now consuming whole star systems at a massive rate, surging outward in a fractal pattern in massive swarming tendril-like waves made of substantial fractions of the mass orbiting each star. She also discovers that herself, Markarian, Mirsky, and Seven, their confrontation having unleashed the Greenfly upon the galaxy, have receded into the mists of prehistory and become mythologised as primordial figures.…

Eventually, she catches up with the Hideyoshi in AD 9730, by which point the Greenflies have wiped out most of human civilisation. The two ships view this under the effects of heavy time dilation from high above the Galactic Plane (Galactic North), and the two captains discuss the situation. Markarian reveals that they both were involved in a betrayal during that fateful encounter: he gave Run Seven the codes to the colonists' reefersleep caskets when Seven forced him to watch her undergo torture, while she, under the influence of torture, provided Seven and his crew with the Greenflies and their activation codes. They wonder between them if anybody could have survived within the swarm of machine-tended bio-domes. Eventually they detect a message emanating from the swarm, parsed in an ancient human format, tight-beamed directly at them. The message is from Remontoire, who has managed to survive with a small group of Conjoiners orbiting a pulsar (the Greenflies do not attack pulsars, which lack the light to sustain vegetation and usually the mass to build domes).…

The novel Absolution Gap contains a reference to entities in a parallel universe (or at least claiming to be from one) facing attack from an agent very similar to the Greenfly. In their world, the Greenfly gradually consume the entire universe, rendering it uninhabitable. There are references that may imply the alternate universe entities are actually the extreme far future of humanity.

From the Wikipedia entry for GALACTIC NORTH

      One night, during their absence, and close to the front door, something grew. The scientists, after long conference, decided it was a plant but it didn't look like a plant.
     It was a triangular mirror balanced on a cable-like stem as thick as a man's wrist. The "mirror" followed the sun and, at evening or on dull days, folded itself up geometrically into a neat square black box.
     Two days later there was another growth. This was a small brass colored sphere about the size of a walnut perched on the top of a thin black rod about two feet in height.
     An intrigued expert touched it with his hand and was flung untidily to the path. He was not dead but the local hospital had some difficulty bringing him round. A diagnostician pronounced near-lethal electric shock.

     The door of Lipscombe's house had been open and on the path was—It had looked like an oxygen cylinder some six feet in length and supported itself on thin legs like black cables. On top, near the thicker end, something spun rapidly, catching the sunlight. He'd had the curious impression that something was watching through it and the thought radar vision had occurred to him before the soldiers had bustled him out of the room.

     After much security checking they were finally admitted to a pleasantly furnished recreation room where a group of obvious scientists were arguing fiercely.
     "But, my dear fellow, why should such a conclusion strike you as pure fantasy?"
     "Because the conception in itself is preposterous—the term natural electronic life is a sheer absurdity."
     "Why should it be? When one considers the incredible complication of normal organic life why should not a simpler, less complex life form evolve in a different environment. A planet with a highly radio-active crust, a chemical atmosphere and, possibly, rich surface metal deposits and you have the perfect incubator for electronic life to develop. Consider, an almost pure copper deposit, a few drops of acid from the chemical atmosphere, a natural vein of metallic ore and you have not only natural electricity, but the basis for a natural circuit, or, if you prefer it, an electronic nervous system. Have you read what Mayer deduced during his experiments with radio-active crystals, for example?"
     "I have, but the fact that these artificial cells developed apparent reflexes is no basis for presupposing the preposterous."
     "My God, man, you conceded yesterday that we can make organic life cells in a laboratory. You must also concede, therefore, that this same organic life has evolved naturally on this planet. Why, then, knowing also that electrical life has also been constructed in a laboratory will you not admit the possibility of electronic life evolving naturally?"
     "I still find the conception of intelligent life housed in a metallic body and based on series of circuits wildly improbable. The theory of outworld invasion by what you call an electronic life form is, in my opinion, sheer imagination and owes nothing whatever to applied science."

"What good do they think all these troops and weapon experts will do? They're still thinking in terms of an outworld alien invader with super weapons and they're not. Why the hell can't they see that? This is a minor occupation force sitting on its presumed backside in one of the safest conquests it's possible to conceive. They've introduced their own ecology into this environment and, because it's dominant in respect of our own, we're going under. Oh yes, I know it looks horrible and alien to our own but the principle is the same. We have sparrows and they introduce hawks. We have oak trees but along comes a strangling ivy; it's as simple as that. Some of the alleged machines our troops are now reporting may be equivalent of wolves or tigers and not armored vehicles at all. Once or twice they have opened up with something new, but this, I think, is reflex. At times we may be an irritant and the aliens take a smack at us like a dozing man slapping at a fly. They can afford to doze, chuck a few seeds out of the window, let loose some hawks and nature will do the job for them. Not too far in the future they can step out of the front door into world which is seeded, prepared and ready for them. Their peculiar ecology will have removed anything alien which might once have cluttered up the place."

From NO TRUCE WITH TERRA by Philip E. High (1964)

It was a world that had never known a sun. For more than a billion years, it had hovered midway between two galaxies, the prey of their conflicting gravitational pulls. In some future age the balance would be tilted, one way or the other, and it would start to fall across the light-centuries, down toward a warmth alien to all its experience.

Now it was cold beyond imagination; the intergalactic night had drained away such heat as it had once possessed. Yet there were seas there—seas of the only element that can exist in the liquid form at a fraction of a degree above absolute zero. In the shallow oceans of helium that bathed this strange world, electric currents once started could flow forever, with no weakening of power. Here superconductivity was the normal order of things; switching processes could take place billions of times a second, for millions of years, with negligible consumption of energy. It was a computer’s paradise. No world could have been more hostile to life, or more hospitable to intelligence.

And intelligence was there, dwelling in a planet-wide incrustation of crystals and microscopic metal threads. The feeble light of the two contending galaxies—briefly doubled every few centuries by the flicker of a supernova—fell upon a static landscape of sculptured geometrical forms. Nothing moved, for there was no need of movement in a world where thoughts flashed from one hemisphere to the other at the speed of light. Where only information was important, it was a waste of precious energy to transfer bulk matter.

Yet when it was essential, that, too, could be arranged. For some millions of years, the intelligence brooding over this lonely world had become aware of a certain lack of essential data. In a future that, though still remote, it could already foresee, one of those beckoning galaxies would capture it. What it would encounter, when it dived into those swarms of suns, was beyond its power of computation.

So it put forth its will, and myriad crystal lattices reshaped themselves. Atoms of metal flowed across the face of the planet. In the depths of the helium sea, two identical subbrains began to bud and grow…

Once it had made its decision, the mind of the planet worked swiftly; in a few thousand years, the task was done. Without a sound, with scarcely a ripple in the surface of the frictionless sea, the newly created entities lifted from their birthplace and set forth for the distant stars.

crusade to exterminate all warm-life in our galaxy. )

From CRUSADE by Arthur C. Clarke (1968)

(ed note: Terran civilization has become very high tech. They have lots of self-reproducing self-maintaining sun-powered gadgets. Nuclear war looms. A group of fifty scientist run away to Tau Ceti to make an interstellar colony. Years later they go back to visit Terra. Due to the weird properties of their faster-than-light starship, they arrive at Terra about three billion years after they left.)

(They are rather startled to discover that humans are extinct, and there is now an ecosystem based on cybernetic life.)

Earth rolled into sight. The planetary disc was still edged with blueness darkening toward black. Clouds still trailed fleecy above shining oceans; they gleamed upon the darkness near the terminator as they caught the first light before sunrise. Earth was forever fair.

But the continental shapes were new, speckled with hard points of reflection upon black and ocher where once they had been softly green and brown. There were no polar caps; sea level temperatures ranged from eighty to two hundred degrees Fahrenheit. No free oxygen remained: the atmosphere was nitrogen, its oxides, ammonia, hydrogen sulfide, sulfur dioxide, carbon dioxide, and steam. Spectroscopes had found no trace of chlorophyll or any other complex organic compound. The ground cover, dimly glimpsed through clouds, was metallic.

His name was a set of radio pulses. Converted into equivalent sound waves, it would have been an ugly squawk; so because he, like any consciousness, was the center of his own coordinate system, let him be called Zero.

He was out hunting that day. Energy reserves were low in the cave. That other who may be called One—being the most important dweller in Zero's universe—had not complained. But there was no need to. He also felt a dwindling potential. Accumulators grew abundantly in their neighborhood, but an undue amount of such cells must be processed to recharge One while she was creating. Motiles had more concentrated energy. And, of course, they were more highly organized. Entire parts could be taken from the body of a motile, needing little or no reshaping for One to use. Zero himself, though the demands on his functioning were much less, wanted a more easily assimilated charge than the accumulators provided.

In short, they both needed a change of diet.

The sky was still light when he came on spoor: broken earthcrystals not yet healed, slabs cut from several boles, a trace of lubricant. Tuning his receptors to the highest sensitivity, he checked all the bands commonly made noisy by motiles. He caught a low-amplitude conversation between two persons a hundred miles distant, borne this far by some freak of atmospherics; closer by he sensed the impulses of small scuttering things, not worth chasing; a flier jetted overhead and filled his perception briefly with static. But no vibration of the big one. It must have passed this way days ago and now be out of receptor-shot.

A nearly full moon rose over the hills like a tiny cold lens. Night vapors glowed in masses and streamers against a purple-black sky where stars glittered in the optical spectrum and which hummed and sang in the radio range. The forest sheened with alloy, flashed with icy speckles of silicate. A wind blew through the radiation-absorber plates overhead, setting them to ringing against each other; a burrower whirred, a grubber crunched through lacy crystals, a river brawled chill and loud down a ravine toward the valley below.

Once he tapped lubricant from a cylinder growth and once he thinned his acids with a drink of water. Several times he felt polarization in his energy cells and stopped for a while to let it clear away: he rested.

Swiftly, he prepared himself. First he considered his ordinary weapons. The wire noose would never hold the monster, nor did he think the iron hammer would smash delicate moving parts (it did not seem to have any), or the steel bolts from his crossbow pierce a thin plate to short out a crucial circuit. But the clawed, spearheaded pry bar might be of use. He kept it in one hand while two others unfastened the fourth and laid it with his extra armament in the carrier rack. Thereupon they deftly hooked his cutting torch in its place. No one used this artificial device except for necessary work, or to finish off a big motile whose cells could replace the tremendous energy expended by the flame, or in cases of dire need.

A tree is a tree, anywhere and anywhen, no matter how intricate its branching or how oddly shaped its leaves and blossoms. But what is a—

—thick shaft of gray metal, planted in the sand, central to a labyrinthine skeleton of straight and curved girders, between which run still more enigmatic structures embodying helices and toruses and Möbius strips and less familiar geometrical elements; the entire thing some fifty feet tall; flaunting at the top several hundred thin metal plates whose black sides are turned toward the sun?

There was no soil, only sand, rusty red and yellow. But outside the circle which had been devastated by the boat's jets, Darkington found the earth carpeted with prismatic growths, a few inches high, seemingly rooted in the ground. He broke one off for closer examination and saw tiny crystals, endlessly repeated, in some transparent siliceous material: like snowflakes and spiderwebs of glass. It sparkled so brightly, making so many rainbows, that he couldn't well study the interior. He could barely make out at the center a dark clump of … wires, coils, transistors?

They walked among surrealistic rods and frames and spirals, under ringing sheet metal. The crystals crunched beneath their tread and broke sunlight into hot shards of color. But not many rays pushed through the tangle overhead; shadows were dense and restless. Darkington began to recognize unrelated types of structure. They included long, black, seemingly telescopic rods, fringed with thin plates; glassy spheres attached to intricate grids; cables that looped from girder to girder. Frequently a collapsed object was seen crumbling on the ground.

Frederika looked at several disintegrated specimens, examined others in good shape, and said: "I'd guess the most important material, the commonest, is an aluminum alloy. Though—see here—these fine threads embedded in the core must be copper. And this here is probably manganese steel with a protective coating of … um … something more inert."

Darkington peered at the end of a broken strut through a magnifying glass. "Porous," he said. "Good Lord, are these actually capillaries to transport water?"

It stirred among shadows, behind a squat cylinder topped with the usual black-and-mirror plates. Perhaps three feet long, six or eight inches high … It came out into plain view. Darkington glimpsed a slim body and six short legs of articulated dull metal. A latticework swiveled at the front end like a miniature radio-radar beamcaster. Something glinted beadily beneath, twin lenses? Two thin tentacles held a metal sliver off one of the great stationary structures. They fed it into an orifice, and sparks shot back upward—

The thing stopped in its tracks. The front-end lattice swung toward the humans. Then the thing was off, unbelievably fast. In half a second there was nothing to see.

"It was eating that strut." Frederika walked over to the piece of metal which the runner had dropped. She picked it up and came stiffly back with it. "See, the end has been ground away by a set of coarse emery wheels or something. You couldn't very well eat alloy with teeth like ours. You have to grind it."

Somehow they found themselves pushing on. Once, crossing an open spot where only the crystals stood, they spied something in the air. Through binoculars, it turned out to be a metallic object shaped vaguely like an elongated manta. Apparently it was mostly hollow, upborne by air currents around the fins and propelled at low speed by a gas jet. "Oh, sure," Frederika muttered. "Birds."

(ed note: Zero appears and charges)

Time slowed for Darkington, he had minutes or hours to tug at his gun, hear Frederika call his name, see Kuroki take aim and fire. The shape was mountainous before him. Nine feet tall, he estimated in a far-off portion of his rocking brain, three yards of biped four-armed monstrosity, head horned with radio lattice, eyes that threw back sunlight in a blank glitter, grinder orifice and— The rocket exploded. The thing lurched and half fell. One arm was in ruins.

(ed note: Zero captures the humans. He finds them puzzling.)

The units Zero had captured were making considerable sound-wave radiation. If not simply the result of malfunction in their damaged mechanism, it must be produced by some auxiliary system which they had switched on through interior controls. Zero's sound receptors were not sensitive enough to tell him whether the emission was modulated. Nor did he care. Certain low forms of motile were known to have well-developed sonic parts, but anything so limited in range was useless to him except as a warning of occurrences immediately at hand. A person needed many square miles to support himself. How could there be a community of persons without the effortless ability to talk across trans-horizon distances?

That energy drain left him ravenous. He scouted the forest in a jittery spiral until he found some accumulators of the calathiform sort (cup-shaped; concave). A quick slash with his pry bar exposed their spongy interiors, rich with energy storage cells and mineral salts. They were not very satisfying eaten unprocessed, but he was too empty to care. With urgency blunted, he could search more slowly and thoroughly. Thus he found the traces of a burrow, dug into the sand, and came upon a female digger. She was heavy with a half-completed new specimen and he caught her easily. This too would have been better if treated with heat and acid, but even raw the materials tasted good in his grinder.

From EPILOGUE by Poul Anderson (1962)

Energy Creatures

Energy creatures have a biological basis of patterns of energy with little or no matter involved. In science fiction they are usually fuzzy glowing balls or are totally invisible. Living ball-lightning.

In James Blish's The Star Dwellers, the "angels" are a species of energy creature that inhabit nebulae, and love to curl up in the cozy warmth of a starship's Nernst-effect fusion reactor. They are long-lived, the eldest were born shortly after the birth of the universe about 13 billion years ago. The Starfish from Glen Cook's Starfishers are vast creatures composed of fusion fires and magnetic fields. The human Starfishers protect the Starfish from the "sharks", and in exchange the Starfish give "ambergris nodes" which are the sine qua non of tachyon communication equipment. Magnetic nebula life appears in William Tedford's Nemydia Deep and "magnetovores" (i.e., organisms that consume magnetism) living in the solar corona are in David Brin's Sundiver. There are photovores around the galactic core in Gregory Benford's Sailing Bright Eternity (also described in Benford's article in the August 1995 issue of Fantasy & Science Fiction magazine, A Scientist's Notebook: Life at Galactic Center).

And many more.

The natural habitat of such creatures in science fiction is commonly in the interiors of stars or nebulae. Pulp scifi often have energy creatures native to Sol visiting Mercury, where they are encountered by human astronauts. Electromagnetic creatures in pulp scifi often cause mischief by zipping through telegraph and power lines, and radio beams. Since they presumably eat energy they are immune to most weapons, and have a nasty habit of sucking power plants dry of electricity.

And if you are an old geezer like me, the episode of Jonny Quest called "The Invisible Monster" which featured an energy creature scared the living poop out of you. At least in Jonny Quest polls, that's the ep which wins the "most scary" vote.


"You can't beat the Drej. They're pure energy!"

Korso, Titan A.E.

Creatures that dispense with the need to have a body altogether.

Energy Beings are frequently Sufficiently Advanced or Precursors; in fact, non-physicality is a common prerequisite, though they may take on A Form You Are Comfortable With. Often times this means that when they "Touch" a corporeal being it has interesting side effects. Other times they are the result of when a species Ascend to a Higher Plane of Existence. e Even cheaper and simpler to pull off than Rubber-Forehead Aliens, which explains why Energy Beings and Human Aliens so often dominate the demographics of The Final Frontier. The Angelic Aliens and Starfish Aliens especially may appear in this form.

Never mind that being "made of energy" makes as much sense as being "made of weight". This shows that many still don't know what the word "energy" really means.

It is also considered nonsensical because "energy" beings usually act more like floating clouds of luminescent gas. So a better term to use here might be "gaseous beings". Or, they might just plain be made of stars.

They may often be used as a way to represent gods, angels, the afterlife, and similar subjects without dealing with the religious connotations normally attached to them.

Of course, Energy Beings share many characteristics usually ascribed to concepts such as spirits and souls, often making them an example of Sufficiently Analyzed Magic.

See Made of Magic for a more fantastic version.

See also: Evolutionary Levels and Hollywood Evolution, as well as Ball of Light Transformation.

TV Trope page for list of examples)


(ed note: Hugh Kellard was a member of the Survey. In the academy he was always spouting the glories of the conquest of space. Then something happened. A survey ship crashed on Mercury with Kellard the only survivor. He walked out on the surface and Something Happened. After being rescued, he immediately quit the Survey. At his retirement home, he is unexpectedly visited by his old buddy Halfrich, who is now the leader of Survey.

Halfrich just has one question: What happened to Kellard that made him quit? Since Halfrich has not accepted Kellard's resignation, he can and does drag Kellard back to Mercury to try and find the truth. Kellard tries to be evasive but Halfrich is not taking "no" for an answer. Especially since the radar record shows that Kellard was not alone at the crash site. Halfrich does not know it but Kellard is trying to protect him, and the Survey.

They stand on the surface of Mercury, and Something Happens)

      Morgenson’s voice chattered in their ears. “Blips showing, coming—” And then he suddenly yelled, “I see them! They—”
     Halfrich swung around with ponderous swiftness. There was nothing between them and the fire-fountain, nothing around the spouting flames.
     “Above you, coming down!” shouted Morgenson. “My God, what—?”
     Kellard slowly raised his head. Because he knew what to look for, he saw them while Halfrich was still gazing around searching.
     They came flashing down out of the sky. There were four of them this time—no, five. They were like five individual swirls of shining light, so bright that the sun-bleached heavens seemed to darken around them.
     Halfrich said bewilderedly, “I don’t see—”
     Kellard pointed upward. “There.”
     “Those flakes of flame?”
     “Not flakes of flame,” said Kellard. “They are the children of the stars.”
     Halfrich went rigid, staring upward. And now Kellard knew that there was no more hope. No hope at all.

     The five bright things had flashed down toward the great fire-fountain. They plunged into it, out of it, climbed swift as the eye could follow, racing up its mighty geyser, frolicking in it joyously. The fountain raved higher and the five sped up and whirled and danced upon its rising plume, and Kellard thought that they were laughing. In and out of the leaping fires they plunged, and then one of them veered down toward the place where Halfrich and Kellard stood. There was something so humanly purposeful in its sudden movement that Halfrich stepped back.
     “Stand still.” said Kellard.
     “But—” Halfrich protested.
     “They won’t hurt us,” said Kellard, his voice flat and dull. “They’re friendly, playful, curious. Stand still.”

     And now all five of the flashing flames were around them, darting, recoiling, then gliding forward again to touch their heat-armor with questing tendrils of living force, living light.
     Halfrich spoke, trying to keep his voice steady but forming the words in a choked fashion.
     “Something—in my mind—”
     “They’re telepathic, in a way you can’t even imagine,” said Kellard. “And they’re curious. They’re curious about us, what we are, how we think. They can merge minds with us, somehow.” And he added, with a last cruel impulse of dying anger, “You wanted to know. Now know.”

     He had time to say nothing more before the impact hit him, just as it had that other time, the full stunning shock of unearthly minds interlocking with his own, searching out his thoughts and memories.
     Curious, yes. Like children who have found strange, ungainly creatures and wish to know how they live. And as they entered his mind, Kellard’s mind entered theirs, fused with them, and there was again the dizzying whirl of memories and feelings that were not his own, that his different, more brutishly physical nature could never apprehend more than dimly.

     But that half-apprehension was staggering. He was no longer Hugh Kellard, a man with flesh and bones who had been born on an air-drowned heavy planet named Earth.
     He was one of the children of the stars.

     His memory stretched far back, for his life was almost unlimited in time. For long and long beyond human comprehension he had lived with his companions the strange and beautiful life of their kind.
     Born of the stars, of the unimaginable forces, pressures, temperatures, atomic conditions within the mighty suns. Born, as the end product of an evolutionary chain almost as old as the universe itself, a grouping of photons that grew toward consciousness, toward individuality and volition. Their bodies were force, rather than matter, their senses had nothing to do with sight or hearing, their movement was an effortless flash and glide as fast as the photons of light itself.

     With the other kind of life in the universe, the heavy slow-moving things of matter that grew upon the comparatively cold, dark planets, they had had nothing to do at all. They were of the suns, not the planets. and those chill worlds of fixed, solid matter so repelled them that they would not even approach most of them.
     Star-child, star-child, at home in the bursting splendors of the stellar fires, and able to move like light from star to star. And again Kellard felt the agony of that ecstasy that was his in this shared memory.

     “We things of matter, we men, who thought that space and the stars would be ours—”

     But how could the wide universe belong to solid, heavy, physical creatures who must painfully move in bubbles of air, who crawled between the petty planets encased in metal tombs, who could not even approach the glories of the great suns?
     No, the ecstasy was one that men would never know except at secondhand through this brief contact! The glorious rush together of the star-children through the vast abysses, drinking up the energy of the radiation about them. The audacious and dangerous coasting along the shores of dark nebulae, racing the lumbering comets and leaving them behind, on until you felt through all your photons the beckoning warmth of the star you approached. Ignore the cinders called planets that creep around it, speed faster, faster, brothers, the way has been long but we are almost there! And now the radiation that was so weak in the outer darks is strong and lusty-roaring, and the great prominences reach out like arms to gather us in. The shock, the joy, of the first plunge once more into the star. Dive deep, brothers, deep through the outer fires into the throbbing solar furnaces where the atoms are hammered as in forges, changing, shifting their shapes, exploding into force.
     Spin in the vortices of the great stellar tornadoes, fling off and fall headlong and then dive laughing in again. Search for the others of your kind, if there are none here there will be at the next star. Up again, out of the boiling fires, and then drift quiet, dreaming, in the pearly glow of the corona, endless afternoon of warmth and light and peace.

     But on the sunward side of the tiny planet nearby, a plaything beckons. Fire and light fountain up from the solid rock. There at least we can go, for that place is washed by tides of solar life, not chilled and dead. Speed down toward it, as the fire, the life it spouts higher out of the repellently fixed and solid matter. Frolic in the fountain, through and around it as it rises higher. And what are the things that move on the rock near it, the things that look grotesquely as though matter had been endowed with life? Reach out with your thought-senses and try to apprehend them. Mind, life—in matter! Try to understand how matter thinks, how matter feels, plumb the grotesque memories of them, the vistas of crawling things at the bottom of whelming air-oceans, things of clay too frail to endure, yet things that in their brief living have come here. But the mind recoils from such memories, such a life.
     Brothers, we go! First to refresh ourselves in the deepest streams of the star, and then away across the abysses to another star we know. There is nothing to hold us here—

     And the oneness was gone from Kellard’s mind, and he was no child of light and stars, he was a man of clay, standing stupid and sick and shaking by the falling fires of the fountain.
     He looked at Halfrich. But Halfrich stood, with his head bowed, and Kellard felt only pity.
     He touched his arm. “We’ll go back to the ship.”
     For a long moment. Halfrich did not respond. Then he turned and walked, plodding with head down, not looking up once at the flaring sky.

     In the little ship, he sat later with Kellard. He had not spoken yet, and Morgenson and the others, bewildered and awed, had still not dared ask questions. Finally Halfrich looked at Kellard, pain still in his eyes.
     “I was thinking,” he said. “I was remembering my little boy, years ago. He had just learned to walk, and he started out the door, eager to explore the whole town. He stubbed his toe, and he sat down and cried.”
     “You tried to spare me this,” said Halfrich after a little while. “Thanks for that, Kellard. It didn’t work, but thanks anyway.”

     Kellard said, "Look, no one else knows. No one else is ever likely to know. The only place where the men of matter and the children of stars could meet is a place like Sunside, and how many such meetings would ever by chance happen? We don’t have to tell everyone, to take the heart and eagerness out of them by letting them know they’ll always be second-best in space.”
     Halfrich thought about that. And then he shook his head. “No. We’ve stubbed our toe. We’ve learned we’re not and never will be the sole inheritors of the universe. All right, we’ll accept the fact and go on. The planets will be ours, just the same. And someday—” He paused, then said, “—someday, maybe, the sons of the planets and the children of stars will take hands, know each other. No, Kellard. We’ll tell them.”

From SUNFIRE! by Edmond Hamilton (1962)

(ed note: This charming story from those innocent days when astronomers thought Mercury was tidally braked to Sol. The scene is an observatory based in the twilight belt, observing the Sun on every conceivable frequency. One fine day there is a record-breaking solar prominence. As the astronomers frantically observe it they notice something ... odd. )

      Though this had happened half a dozen times before, it was always exciting. It meant that we could capture some of the very substance of the sun as it went hurtling past in a great cloud of electrified gas. There was no danger; by the time it reached us it would be far too tenuous to do any damage, and, indeed, it would take sensitive instruments to detect it at all.
     One of those instruments was the Observatory’s radar, which was in continual use to map the invisible ionised layers that surround the sun for millions of miles. This was my department; as soon as there was any hope of picking up the oncoming cloud against the solar background, I aimed my giant radio mirror toward it.
     It came in sharp and clear on the long-range screen—a vast, luminous island still moving outward from the sun at hundreds of miles a second. At this distance it was impossible to see its finer details, for my radar waves were taking minutes to make the round trip and to bring me back the information they were presenting on the screen. Even at its speed of not far short of a million miles an hour, it would be almost two days before the escaping prominence reached the orbit of Mercury and swept past us toward the outer planets. But neither Venus nor Earth would record its passing, for they were nowhere near its line of flight.

     I switched to the short-range scanner, and the image of the cloud expanded so enormously that only its central portion was on the screen. At the same time I began to change frequency, tuning across the spectrum to differentiate among the various levels. The shorter the wave length, the farther you can penetrate into a layer of ionised gas; by this technique I hoped to get a kind of X-ray picture of the cloud’s interior.
     It seemed to change before my eyes as I sliced down through the tenuous outer envelope with its trailing arms, and approached the denser core. ‘Denser’, of course, was a purely relative word; by terrestrial standards even its most closely packed regions were still a fairly good vacuum. I had almost reached the limit of my frequency band, and could shorten the wave length no farther, when I noticed the curious, tight little echo not far from the centre of the screen.
     It was oval, and much more sharp-edged than the knots of gas we had watched adrift in the cloud’s fiery streams. Even in that first glimpse, I knew that here was something very strange and outside all previous records of solar phenomena. I watched it for a dozen scans of the radar beam, then called my assistant away from the radio-spectrograph, with which he was analysing the velocities of the swirling gas as it spun toward us.

     ‘Look, Don,’ I asked him, ‘have you ever seen anything like that?’
     ‘No,’ he answered after a careful examination. ‘What holds it together? It hasn’t changed its shape for the last two minutes.’
     ‘That’s what puzzles me. Whatever it is, it should have started to break up by now, with all that disturbance going on around it. But it seems as stable as ever.’
     ‘How big would you say it is?’ I switched on the calibration grid and took a quick reading.
     ‘It’s about five hundred miles long, and half that in width.’
     ‘Is this the largest picture you can get?’
     ‘I’m afraid so. We’ll have to wait until it’s closer before we can see what makes it tick.’
     Don gave a nervous little laugh.
     ‘This is crazy,’ he said, ‘but do you know something? I feel as if I’m looking at an amoeba under a microscope.’
     I did not answer; for, with what I can only describe as a sensation of intellectual vertigo, exactly the same thought had entered my mind.

     We forgot about the rest of the cloud, but luckily the automatic cameras kept up their work and no important observations were lost. From now on we had eyes only for that sharp-edged lens of gas that was growing minute by minute as it raced towards us. When it was no farther away than is the moon from Earth, it began to show the first signs of its internal structure, revealing a curious mottled appearance that was never quite the same on two successive sweeps of the scanner.
     By now, half the Observatory staff had joined us in the radar room, yet there was complete silence as the oncoming enigma grew swiftly across the screen. It was coming straight toward us; in a few minutes it would hit Mercury somewhere in the centre of the daylight side, and that would be the end of it—whatever it was. From the moment we obtained our first really detailed view until the screen became blank again could not have been more than five minutes; for every one of us, that five minutes will haunt us all our lives.
     We were looking at what seemed to be a translucent oval, its interior laced with a network of almost invisible lines. Where the lines crossed there appeared to be tiny, pulsing nodes of light; we could never be quite sure of their existence because the radar took almost a minute to paint the complete picture on the screen—and between each sweep the object moved several thousand miles. There was no doubt, however, that the network itself existed; the cameras settled any arguments about that.

     So strong was the impression that we were looking at a solid object that I took a few moments off from the radar screen and hastily focused one of the optical telescopes on the sky. Of course, there was nothing to be seen—no sign of anything silhouetted against the sun’s pock-marked disc. This was a case where vision failed completely and only the electrical senses of the radar were of any use. The thing that was coming toward us out of the sun was as transparent as air—and far more tenuous.

     As those last moments ebbed away, I am quite sure that every one of us had reached the same conclusion—and was waiting for someone to say it first. What we were seeing was impossible, yet the evidence was there before our eyes. We were looking at life, where no life could exist…
     The eruption had hurled the thing out of its normal environment, deep down in the flaming atmosphere of the sun. It was a miracle that it had survived its journey through space; already it must be dying, as the forces that controlled its huge, invisible body lost their hold over the electrified gas which was the only substance it possessed.
     Today, now that I have run through those films a hundred times, the idea no longer seems so strange to me. For what is life but organised energy? Does it matter what form that energy takes—whether it is chemical, as we know it on Earth, or purely electrical, as it seemed to be here? Only the pattern is important; the substance itself is of no significance. But at the time I did not think of this; I was conscious only of a vast and overwhelming wonder as I watched this creature of the sun live out the final moments of its existence.
     Was it intelligent? Could it understand the strange doom that had befallen it? There are a thousand such questions that may never be answered. It is hard to see how a creature born in the fires of the sun itself could know anything of the external universe, or could even sense the existence of something as unutterably cold as rigid nongaseous matter. The living island that was falling upon us from space could never have conceived, however intelligent it might be, of the world it was so swiftly approaching.
     Now it filled our sky—and perhaps, in those last few seconds, it knew that something strange was ahead of it. It may have sensed the far-flung magnetic field of Mercury, or felt the tug of our little world’s gravitational pull. For it had begun to change; the luminous lines that must have been what passed for its nervous system were clumping together in new patterns, and I would have given much to know their meaning. It may be that I was looking into the brain of a mindless beast in its last convulsion of fear—or of a godlike being making its peace with the universe.

     Then the radar screen was empty, wiped clean during a single scan of the beam. The creature had fallen below our horizon, and was hidden from us now by the curve of the planet. Far out in the burning dayside of Mercury, in the inferno where only a dozen men have ever ventured and fewer still come back alive, it smashed silently and invisibly against the seas of molten metal, the hills of slowly moving lava. The mere impact could have meant nothing to such an entity; what it could not endure was its first contact with the inconceivable cold of solid matter.
     Yes, cold. It had descended upon the hottest spot in the solar system, where the temperature never falls below seven hundred degrees Fahrenheit and sometimes approaches a thousand. And that was far, far colder to it than the Antarctic winter would be to a naked man.
     We did not see it die, out there in the freezing fire; it was beyond the reach of our instruments now, and none of them recorded its end. Yet every one of us knew when that moment came, and that is why we are not interested when those who have seen only the films and tapes tell us that we were watching some purely natural phenomenon.
     How can one explain what we felt, in that last moment when half our little little world was enmeshed in the dissolving tendrils of that huge but immaterial brain? I can only say that it was a soundless cry of anguish, a death pang that seeped into our minds without passing through the gateways of the senses. Not one of us doubted then, or has ever doubted since, that he had witnessed the passing of a giant.

     We may have been both the first and the last of all men to see so mighty a fall. Whatever they may be, in their unimaginable world within the sun, our paths and theirs may never cross again. It is hard to see how we can ever make contact with them, even if their intelligence matches ours.
     And does it? It may be well for us if we never know the answer. Perhaps they have been living there inside the sun since the universe was born, and have climbed to peaks of wisdom that we shall never scale. The future may be theirs, not ours; already they may be talking across the light-years to their cousins in other stars.
     One day they may discover us, by whatever strange senses they possess, as we circle around their mighty, ancient home, proud of our knowledge and thinking ourselves lords of creation. They may not like what they find, for to them we should be no more than maggots, crawling upon the skins of worlds too cold to cleanse themselves from the corruption of organic life.
     And then, if they have the power, they will do what they consider necessary. The sun will put forth its strength and lick the faces of its children; and thereafter the planets will go their way once more as they were in the beginning—clean and bright… and sterile.

From OUT OF THE SUN by Arthur C. Clarke (1958)

And now, out among the stars, evolution was driving toward new goals. The first explorers of Earth had long since come to the limits of flesh and blood; as soon as their machines were better than their bodies, it was time to move. First their brains, and then their thoughts alone, they transferred into shining new homes of metal and of plastic.

In these, they roamed among the stars. They no longer built spaceships. They were spaceships.

But the age of the Machine-entities swiftly passed. In their ceaseless experimenting, they had learned to store knowledge in the structure of space itself, and to preserve their thoughts for eternity in frozen lattices of light. They could become creatures of radiation, free at last from the tyranny of matter.

Into pure energy, therefore, they presently transformed themselves; and on a thousand worlds, the empty shells they had discarded twitched for a while in a mindless dance of death, then crumbled into rust.

Now they were lords of the galaxy, and beyond the reach of time. They could rove at will among the stars, and sink like a subtle mist through the very interstices of space. But despite their godlike powers, they had not wholly forgotten their origin, in the warm slime of a vanished sea.

And they still watched over the experiments their ancestors had started, so long ago.

From 2001 A SPACE ODYSSEY by Arthur C. Clarke

He had quickly realized that he was a specimen in a cosmic zoo, his cage carefully recreated from the images in old television programmes. And he wondered when his keepers would appear, and in what physical form.

How foolish that expectation had been! He knew now that one might as well hope to see the wind, or speculate about the true shape of fire.

From 2010 ODYSSEY TWO by Arthur C. Clarke (1982)

Ecosystem Classification

In the Traveller role playing game, it broke down animal types into four broad classes: Herbivore, Omnivore, Carnivore, and Scavenger. They were further broken down into sub-types:

  • Herbivore: Animals that eat unresisting food. Plant-eaters, but also whales eating krill and anteaters eating ants.
    • Grazers: Herbivores that devote most of their time to eating. They may be solitary or grouped in herds. Their primary defense is running away very fast. Examples: antelope, moose, whale.
    • Intermittents: Herbivores that do not devote most of their time to eating. They tend to be solitary. They tend to freeze when encountering another animal but will flee if attacked by something larger. Examples: chipmunk and elephant.
    • Filters: Herbivores that pass the environment through their bodies. Grazers move towards food, filters move a flow of water or air through their body in order to gain food. They generally suck, trip, push or pull anything at close range into their digestive sack. They are solitary and tend to be slow-moving. Examples: barnacle.
  • Omnivore: Animals that eat food regardless of its resistance. For instance: bears eat berries as well as small animals.
    • Gatherers: Omnivore that display a greater tendency to herbivorous behavior. They are similar to Intermittents. Examples: raccoon and chimpanzee.
    • Hunters: Omnivore that display a greater tendency to carnivorous behavior. Similar to small or inefficient chasers. Examples: bears and humans.
    • Eaters: Omnivore that does not distinguish its food, it consumes all that it confronts. Examples: a swarm of army ants.
  • Carnivore: Animals that eat violently resisting food by attacking and killing said food.
    • Pouncers: Carnivore that kill their prey by attacking from hiding, or by stalking and springing. Generally solitary since it is hard to coordinate such attacks. If they surprise their prey they will attack, but will sometimes attack even when surprise is lost. If they themselves are surprised they will flee. Examples: cats.
    • Chasers: Carnivore that kill their prey by attacking after a chase. They tend to be pack animals. Examples: wolves.
    • Trappers: Carnivore that passively allow their prey to enter a created trap, whereupon the prey is killed and eaten. They tend to be solitary and slow, but will attack literally anything that enters the trap. Examples: spider and ant lion.
    • Sirens: Similar to Trappers, except it creates some kind of lure to draw prey into the trap. Sometimes the lure is specific to some prey animal, sometimes the lure is universal. Examples: angler fish, Venus fly trap.
    • Killers: Carnivore that devote much attention to killing, a blood lust. They have a raw killing instinct. Attacks are fierce and violent. They do not care how large their opponent is. Examples: shark.
  • Scavenger: Animals that share or steal the prey of others, or that takes the nasty unconsumed left over bits.
    • Intimidators: Scavenger that steal food from other animals by frightening or threatening. They approach another animal's kill and force it away by appearing to be a threat. Examples: coyote.
    • Hijackers: Scavenger that boldly steal food from another animal. Hijackers are stronger or larger than the victim animal, so that it cannot effectively object. Examples: lion, tyrannosaurus rex.
    • Carrion-Eaters: Scavengers that take dead meat when it becomes available, often waiting patiently for all other threats to disperse first. Examples: buzzard.
    • Reducers: Scavengers that act constantly on all available food. They eat the remains of food after all other scavengers are finished with it. They are generally microscopic. Examples: bacteria.

Life on a Virgin Comet

     The barren, icy world of the comet is the only known home of the therm-trap, a meter-sized living greenhouse that houses a community of organisms living in ecological balance. They are sustained by the comet’s main ingredient, water.

     Called a virgin comet because it has never passed close to a star, Comet Stubbs is a permanent traveler in the vast dark regions of interstellar space. This comet is named for its discoverer, Dr. Harold Stubbs, who has studied over 200,000 comets using detection gear of his own design.

     Interest in therm-traps is not based solely on scientific curiosity. They produce a waste product that stays fluid in space, an ideal lubricant for machines used in supercool environments.

     Science has learned that the therm-trap is a delicate system of animals centered on a creature supporting a lenslike organ. It keeps this moving “eye” focused on the brightest light in the sky, absorbing all the energy it can. It has a tenuous grasp on life, slipping easily into long periods of dormancy triggered by loss of light — a natural defense. But it is sensitive, too. Should too much lubricant be removed from its base, it will lose heat and perish. Thus, the therm-traps remain a mystery to frustrated biologists, who study them only from safe distances.

     Sadly, with its waste oil so popular on the black market, and no substitute thus far invented, the survival of this unique species remains in question.

Predator / Prey

Note that the animal type which an intelligent alien evolved from will give clues as to that alien's psychology. One of the most fundamental catagories of animals is where do they fall on the predator-prey spectrum? Fundamental because it it literally a matter of life and death. This will influence things ranging from diet to starship battle tactics.

Predator Vision

Basically predators are looking for prey while prey are looking out for predators.

Here on Terra, Carnivores and Omnivores tend to have their eyes aimed forwards working together, so as to allow binocular vision to gauge the distance to their prey. This tells them when they are close enough to strike and kill their victim.

In self-defense, Herbivores (i.e., the prey) tend to have monocular vision, eyes on the side of their face aimed left and right working separately. This allows them to approximate 360° vision thus reducing the blind spot a carnivores can use for ambush purposes.

The upshot of this is one can theoretically figure out if an alien species is predator or prey just by examining the arrangement of their eyes.


(ed note: After the Rim Wars, the former planets of the human empire are trying to re-connect. The bumbling idiots of the Rediscovery & Reeducation Service discover lost colonies and attempt to add them to the empire. And behind them the Investigation-Adjustment service follows and tries to clean up the mess that R&R makes.

Things get worse on Gienah. The I-A stumbles over a new inhabited planet first for a change. But it isn't a human planet, it is aliens. What's worse it that I-A intercepted a routine request sent to R&R for an instructor to be sent to Gienah. The request was seemingly sent by a officer named Riso.

Except that Riso was on a R&R starship called the Delphinus Rediscovery. Which was lost eighteen months ago.

I-A realizes that the aliens of Gienah have captured the Delphinus Rediscovery, and forged the routine request. The aliens are dangerous. But this could be a valuable contact. So I-A sends their new hot-shot recruit, a man named Orne. He will have five days to try and make an alliance with the aliens and find out where the Delphinus Rediscovery is being held. If he fails, I-A is going to wipe out the aliens with a planet-buster bomb. Orne knows that the aliens are pretending to be genetically mutated humans. As a precaution, they have surgically implanted a radio in Orne's neck so that I-A can listen in.

As the scene opens, Orne is being briefed by his boss, Umbo Stetson)

      (Orne askes) "What do we know about them?"
     (Stetson says) "Not much. They look something like an ancient Terran chimpanzee, but with blue fur. Face is hairless, pink-skinned." Stetson touched a button at his waist. The translite map above him became a screen with a figure frozen on it. "This is life size."
     "Looks like the famous missing link (halfway between ape and human)," Orne said.
     "Yeah, but you've a different kind of link to find."
     "Vertical slit pupil in their eyes," Orne said. He studied the figure intently. The Gienahn had been recorded from the front by a mini-sneaker. The figure stood about a meter and a half tall. The stance was slightly bent forward, long arms hanging. The nose was flat with two vertical slits. The mouth was a lipless gash above a receding chin. Four ringers on the hands. It wore a wide belt from which dangled neat pouches and what appeared to be tools, although their use was obscure. Perhaps they were weapons. There appeared to be the tip of a tail protruding from behind one of the squat legs. The creature stood on lawn like greenery and behind it towered the faery spires of the city they'd observed from the air.
     "Tails?" Orne asked.
     "Right They're arboreal. Not a road on the whole planet that we can find. Lots of vine lanes through the jungle, though." Stetson's face hardened. "Match that with a city as advanced as the one there."

     "Slave culture?"
     "How many cities do they have?"
     "We've found two. This one and another on the far side. The other one's a ruin."
     "You tell us. Lots of mysteries here."
     "How extensive is the jungle cover?"
     "Almost complete on the land surfaces. There are polar oceans, a few lakes and rivers. One low mountain chain follows the equatorial belt about twothirds of the way around the planet. Continental drift scars are old. The surface has been stabilized for a long time."
     "And only two cities. Are you sure of that?"
     "Reasonably. It'd be pretty hard to miss something the size of that place." He pointed to the city behind the figure on the screen. "It must be two hundred kilometers long, at least fifty wide. It's swarming with these creatures. We've a good zone-count estimate; it places this city's population at more than thirty million. In population, it's the biggest single city we've ever heard of."
     "Whee-ew," Orne breathed. "Look at the size of those buildings. What these Gienahns could tell us about urban living."
     "And we may never hear what they have to say, Orne. Unless you bring them into the fold, there'll be nothing but ashes for our archaeologists to pick over."

     "Stet, what're my chances?"
     "Slim. Maybe less than that. These goons probably captured the Delphinus. Our best guess is they want you just long enough to get your equipment and everything you know."

(ed note: Orne is in an antigravity sled, disguised as an R&R officer. He heads to the alien city when his sled is abruptly surrounded by aliens who leaped down from the trees.)

     Orne braked to a creaking stop that shifted the load behind him. He found himself staring through the windshield at a native of Gienah. The native crouched on the hood, a Mark XX exploding-pellet rifle in his right hand directed at Orne's head. In the abrupt shock of meeting, Orne recognized the weapon: standard issue to marine guards on all R&R survey ships.
     "Who are you?" the Gienahn demanded.
     Orne dropped his hand, said: "I'm Lewis Orne of the Rediscovery and Reeducation Service. I was sent here at the request of the First-Contact officer on the Delphinus Rediscovery."
     "What do you carry in your … vehicle?"
     "The R&R equipment, the things a fieldman requires to help the people of a rediscovered planet restore their civilization and economy. When do we go?" Orne asked.
     "The great sun goes down soon," Tanub said. "We can continue as soon as Chiranachuruso rises."
     "Our satellite … our moon."
     "What a beautiful word," Orne said. "Chiranachuruso."
     "In our tongue it means 'The Limb of Victory,'" Tanub said. "By its light we will continue."
     Orne turned, looked back at Tanub. "Do you mean to tell me you can see by what light gets down here through those trees?"
     "Can you not see?" Tanub asked.
     "Not without the headlights."
     "Our eyes differ," Tanub said. He bent toward Orne, peered at Orne's eyes. The Gienahn's vertical slit pupils expanded, contracted.

     "Why do you have just the one big city?" Orne asked. Silence. "I said, why do you …"
     "Orne, you are ignorant of our ways," Tanub growled. "Therefore, I forgive you. The city is for our race, for the foreverness. Our young must be born in sunlight. Once, long ago, we used crude platforms on the tops of the trees. Now … only the wild ones do this. The ones who control the birthing sites control our world," Tanub said. "Once there was another city. We destroyed it, shattered its towers and sent it crashing into the dirty mud where the jungle can reclaim it."
     "Are there many … wild ones?" Orne asked.
     "Fewer each season," Tanub said. His voice sounded boastful, confident.
     "There's how they get their slaves," Stetson said (secretly to Orne through the implanted radio).
     "Soon, there will be no wild ones left," Tanub said.

     Orne said. "Your city — I saw very tall buildings. Of what do you build them?"
     "In your tongue, glass," Tanub said. "The engineers of the Delphinus said it was impossible. As you saw, they are wrong."
     Stetson's voice came hissing on the carrier wave: "A glassblowing culture! That'd explain a lot of things."
     The disguised air sled crept down the jungle aisle as Orne reviewed what he had heard and what he had observed. Glassblowers. High Path Chief. Eyes with vertical slit pupils. An arboreal species. Hunters. Warlike. Slave culture. The young must be born in sunlight. Culture? Or physical necessity? They learned quickly. They'd had the Delphinus and her crew only eighteen standard months.

     "We have not deceived you, Orne, have we?"
     Orne felt his stomach contract. "What do you mean?" The furry odor of the Gienahn was oppressive in the cab.
     "You have recognized that we cannot be mutated members of your race," Tanub said.
     "That's true," Orne said.
     "I like you, Orne," Tanub said. "You shall be one of my slaves. I will give you fine females from the Delphinus and you will teach me many things."
     "How did you capture the Delphinus?" Orne asked.
     "How do you know of this?" Tanub drew back and Orne saw the rifle muzzle come up.
     "You have one of their rifles," Orne said. "We don't pass around weapons. Our aim is to reduce the numbers of weapons throughout the …"

     "Weak ground crawlers!" Tanub said. "You are no match for us, Orne. We take the high path. Our prowess is great. We surpass all other creatures in cunning. We shall subjugate you."
     "I am of the I-A," Orne said. "I came here to find out where you'd hidden the Delphinus."
     "You came to die," Tanub said. "We have hidden your ship in the place that suits us best. In all of our history there has never been a better place for us to crouch and await the moment of attack."
     "It's too bad you feel that way," Orne said. "When two cultures meet as ours are meeting they tend to help each other. Each gains. What have you done with the crew from the Delphinus?"
     "They are slaves," Tanub said. "Those of them who still live. Some resisted. Others objected to teaching us what it is we must know." He pointed the Mark XX at Orne's head. "You will not be foolish enough to object, will you, Orne?"
     "No need for me to be foolish," Orne said. "We of the I-A are also teachers. We teach lessons to people who make mistakes. You have made a mistake, Tanub. You have told me where you have hidden the Delphinus."

     "Go, boy!" Stetson shouted on the hissing carrier wave. "Where is it?"
     "Impossible!" Tanub snarled. The gun muzzle remained centered on Orne's head.
     "It's on your moon," Orne said. "Dark side. It's on a mountain on the dark side of your moon."
     Tanub's eyes dilated, contracted. "You read minds?"
     "No need for the I-A to read minds," Orne said. "We rely on superior mental prowess and the mistakes of others."

     "Two attack monitors are on their way" Stetson's voice hissed. "We're coming in to get you. I'll want to know how you figured this one out."
     "You are a weak fool like the others," Tanub gritted.
     "It's too bad you formed your opinion of us by observing the low grades of R&R," Orne said.
     "Easy, easy," Stetson cautioned. "Don't pick a fight now. Remember he's arboreal, probably as strong as an ape."
     "You ground-crawling slave," Tanub grated. "I could kill you where you sit."
     "You kill your entire planet if you do," Orne said. "I'm not alone, Tanub. Others listen to every word we say. There's a ship above us that could split open your planet with one bomb—wash everything with molten rock. Your planet would run like the glass of your buildings. Your entire planet would be one big piece of ceramic."
     "You lie!"

     "I'll make you an offer," Orne said. "We don't want to exterminate you. We won't unless you force our hand. Well give you limited membership in the Galactic Federation until you've proven you're no menace to other —"
     "You dare insult me," Tanub growled.
     "You'd better believe me," Orne said. "We —" Stetson's voice interrupted: "Got it, Orne! They caught the Delphinus in a tight little mountain valley right where you said it'd be! Blew the tubes off it. We're mopping up now."
     "It's like this, Tanub," Orne said. "We've already recaptured the Delphinus."

(ed note: the Gienahns give up, mission accomplished. Later, Orne is debriefed)

     (Stetson asks) "Tell me, Orne, how'd you tumble to where they'd hidden the Delphinus? We'd already made a quick scan of the moon and it didn't seem possible they'd try to hide it up there."
     "It had to be there. Tanub's word for his people was Grazzi. Most sentients call themselves something meaning 'The People.' But in his tongue, that's Ocheero. There was no such word as Grazzi on our translation list. I started working on it. There had to be a conceptual superstructure here with direct relationship to the animal shape, to the animal characteristics — just as there is with us. I felt that if I could get at the conceptual models for their communication, I had them. I was working under life-and-death pressure and, strangely, it was their lives and their deaths that concerned me."

     "Yes, yes, get on with it," Stetson said.
     "One step at a time," Orne chided. "But on solid ground. By that time, I knew quite a bit about the Gienahns. They had wild enemies in the jungle, creatures much like themselves who lived in what might be enviable freedom. Grazzi. Grazzi. I wondered if it might not be a word adopted from another language. What if it meant 'enemy'?"
     "I don't see where this is leading," Stetson said.
     "It is leading us to the Delphinus."
     "That … that word told you where the Delphinus was?"
     "No, but it fitted the creature pattern of the Gienahns. I'd felt from our first contact that the Gienahns might have a culture similar to that of the Indians on ancient Terra."
     "You mean with castes and devil worship, that sort of thing?"
     "Not those Indians. The Amerinds, the aborigines of wilderness America."
     "What made you suspect this?"
     "They came at me like a primitive raiding party. The leader dropped right onto the rotor hood of my sled. It was an act of bravery, nothing less than counting coup."
     "Counting what?"
     "Challenging me in a way that put the challenger in immediate peril. Making me look silly."

     "I'm not tracking on this, Orne."
     "Be patient; we'll get there."
     "To how you learned where they'd secreted the Delphinus?"
     "Of course. You see, this leader, this Tanub identified himself immediately as High Path Chief. That wasn't on our translation list either. But it was easy: Raider Chief. There's a word in almost every language in our history to mean 'raider' and deriving from a word for road or path or highway."
     "Highwayman," Stetson said.
     "'Raid' itself," Orne said. "It's a corruption of an ancient human word for road."

     "Yeah, yeah, but where'd all this …"
     "We're almost home, Stet. Now, what'd we know about them at this point? Glassblowing culture. Everything pointed to the assumption that they were recently emerged from the primitive. They played into our hands then by telling us how vulnerable their species survival was dependent upon the high city in the sunlight."
     "Yeah, we got that up here. It meant we could control them."
     "Control's a bad word, Stet. But we'll skip it for now. You want to know about the clues in their animal shape, their language and all the rest of it. Very well: Tanub said their moon was Chiranachuruso. Translation: 'The Limb of Victory.' When I had that, it all fell into place."
     "I don't see how."
     "The vertical slit pupils of their eyes."
     "What's that mean?"
     "It means night-hunting predator accustomed to dropping upon its prey from above. No other type of creature has ever had the vertical slit in its light sensors. And Tanub said the Delphinus was hidden in the best place in all of their history. For that to track, the hiding place had to be somewhere high, very high. Likewise, dark. Put it together: a high place on the dark side of Chiranachuruso, on 'The Limb of Victory.'"
     "I'm a pie-eyed greepus," Stetson whispered.

From THE GOD MAKERS by Frank Herbert (1972)

      (Beowulf Shaeffer said) “I’m all for caution. Discretion is the better part of valor and like that. You can even be good businessmen, because it’s easier to survive with lots of money. But you’re so damn concerned with various kinds of survival that you aren’t even interested in something that isn’t a threat. Nobody but a puppeteer would have turned down my offer to describe the Core.”

     (the herbivore alien Puppeteer said) “You forget the kzinti.”
     “Oh, the kzinti.” Who expects rational behavior from kzinti? You whip them when they attack; you reluctantly decide not to exterminate them; you wait till they build up their strength; and when they attack, you whip ‘em again. Meanwhile you sell them foodstuffs and buy their metals and employ them where you need good games theorists. It’s not as if they were a real threat. They’ll always attack before they’re ready."

     “The kzinti are carnivores. Where we are interested in survival, carnivores are interested in meat alone. They conquer because subject peoples can supply them with food. They cannot do menial work. Animal husbandry is alien to them. They must have slaves or be barbarians roaming the forests for meat. Why should they be interested in what you call abstract knowledge? Why should any thinking being if the knowledge has no chance of showing a profit? In practice, your description of the Core would attract only an omnivore.”

     “You’d make a good case if it were not for the fact that most sentient races are omnivores.”
     “We have thought long and hard on that.”
     Ye cats. I was going to have to think long and hard on that.

From AT THE CORE by Larry Niven (1966)

      The Centaurs (they call themseles K'kree) are among the most massive of the major races and are the only example of a major race to be descended from herbivores. An adult Centaur stands about 1.5 meters at the shoulder and between 2.0 and 2.4 meters tall when standing erect. Weight averages 550 kilograms. They are bilaterally symmetrical, hexapedal, and homeothermic. They bear some resemblance to the centaurs of ancient Terran myth, a trait noted by the earliest explorers. There are two sexes.

     Smell is the sharpest of the K'kree senses. Their works of art concentrate upon olfactory rather than visual or auditory elements (although these are often present). Perfumery is as valid an art form for them as sculpture and music are to humans. K'kree differentiate other beings by scent more than by sight or sound, and can detect the approach of enemies at considerable distance. A K'kree with experience in dealing with humans (and other races) can detect certain basic emotions (fear, sexual desire, anger, etc.) from their smell. Due to their sensitive noses they are uncomfortable on worlds with tainted atmospheres, even with filter masks, but this does not prevent them from operating on such worlds.

     Centaurs are extremely conservative in all aspects of their culture. Ceremonial military units (such as bodyguards) are armed with equipment which K'kree military technology outdated centuries ago, and (aside from modifications made necessary by the discovery of spaceflight) K'kree government has not changed significantly in centuries.

     Because of their plains origins, the Centaurs are claustrophobes; they cannot stand to be enclosed. Centaur cities are clumps of low, broad, transparent domes, the buildings inside being never more than one story in height and open to the sky. Partitions inside buildings are achieved with curtains or tapestries. Through training and discipline, some individuals (AFV crews, starship pilots, and so on) are able to overcome this phobia.

     Centaurs are extremely gregarious. They are rarely (if ever) found alone, and will quickly sicken and die if removed from other K'kree for any length of time. A lone K'kree is either deathly ill, and has been exiled by the herd to die, or is dangerously insane. Receiving a trade or diplomatic delegation from the centaurs means entertaining the entire family (one or more wives, servants, scribes, assistants, etc) of the merchant or the ambassador. The K'kree word for "my" refers to a possession of an individual's herd or family, not to that of an individual. Privacy and individuality are exotic and little understood concepts for the K'kree.

     The K'kree are vegetarians, and (understandably) have an instinctive hatred of meat-eating creatures. The K'kree are very uneasy anywhere their sensitive noses detect the smell of cooking meat, any place where meat has been cooked recently, or in the presence of anyone who has eaten meat within the last two or three days (they smell it on the body oils and breath).

by Loren Wiseman and William Keith (1981)

Archaeological sophontology


The K'kree developed as a plains herbivore, who developed intelligence to thwart carnivorous predators. K'kree quickly achieved dominance and, convinced of the righteousness of their ways, committed genocide against a number of meat-eating carnivorous species, called "G'naak" in K'kree speech.

At least one species of G'naak was intelligent and possessed rudimentary spaceflight technology, which they used to escape the K'kree to the Kirur's, the K'kree homeworld, moon. However, the K'kree were determined to wipe out this species and soon followed them to the moon of Kirur and wiped them out to the last sophont. Not even the name of this intelligent "G'naak" species is known any longer. However, non-K'kree sophontologists refer to this "G'naak" species as the Kirrixurians.

Another big evolutionary influence was a planetary holocaust caused by a supernova that caused a great extinction wave on their homeworld. Intelligence was one of the evolutionary responses to this planet-wide disaster.

First Contact & Empire

K'kree expansion into space progressed very slowly after the discovery of the jump drive in -4142. The conservative nature of society and the technical limitations placed upon space flight by that society (K'kree spaceships must be very large, for example (because they are claustrophobic and gregarious)) combined to inhibit early exploration and colonization.

The discovery of other sophonts caused a xenophobic reaction in K'kree society. The realization that intelligent carnivores might exist somewhere in space sparked the K'kree obsession to convert the universe to herbivorism. This obsession stimulated the growth of the Two Thousand Worlds to its present size and still dominates K'kree culture. Local cultures are tolerated and other aspects of K'kree society are not heavily enforced, but all races within the Two Thousand Worlds are herbivorous.

The K'kree Empire eventually stopped in its expansion. Increasing problems of administration over interstellar distances and contact with other starfaring races, such as Hivers and Humaniti, have stabilized the Two Thousand Worlds at its present size.

Hiver-K'kree War of (-2029 to -2013)

K'kree history is one of constant triumph until the K'kree of the Two Thousand Worlds encountered the Hivers of the Hive Federation. K'kree contact with the Hive Federation was soon followed by the Hiver-K'kree War of -2029 to -2013. The military technology of the K'kree proved superior in the first stages of the war. The war ended due to nonmilitary considerations, however, when the Hive Federation demonstrated a plan to radically alter the K'kree social order through the use of psycho-historical techniques and threatened to implement it. The K'kree withdrew to the antebellum borders, and the border between the two states has remained stable to this day.

Cultural sophontology

K'kree are highly social animals with an intense respect for their elders. Their love of nature and the outdoors is legendary manifesting itself in large, open forms of architecture that display the surrounding countryside and optimally create a view of the horizon. K'kree have little concept of private ownership and whenever possible go in for large, public infrastructure shared by large communities.

Belief system and philosophy

K'kree have a compulsory practice of ancestor worship. They venerate their ancestors to a degree that makes the ancient Terran Chinese look like amateurs. This obsession with one's forbears leads to many interesting K'kree art forms as well as a very widespread level of appreciation for history and chronicling.

Morality and ethics

Perhaps the most visible and outwardly visible sign of K'kree philosophy is their incredibly welcoming social behavior. K'kree openly welcome guests and have a long tradition of hospitality. If a K'kree is your friend, he will be your best friend... However, if one steps over one of the lines of K'kree propriety, a K'kree will just as quickly become your worst enemy.

K'kree have an average level of socio-plasticity (tolerance) about most matters except for that of diet. The eating of animals (carnivory), is an overwhelming taboo and will quickly offend a K'kree as well as possibly invoking a vendetta. Foreign merchants, ambassadors, and visitors are advised to avoid meat consumption while in K'kree space.

Cultural hierarchies

The K'kree having a strong interventionary stance balanced by a competing trend towards tribalism, somewhat focused by the herd and steppelord hierarchies.

  • Most K'kree have a general agreement that the "meat-eaters" should be brought to justice to protect herbivorous kind.
  • On the other hand, while gregarious, most K'kree want to protect their culture from outside influences in an isolationist stance.
  • Somehow, it all works to a somewhat successful degree for the K'kree although cultural schisms sometimes produce offshoots such as the Lords of Thunder.
  • After all, the K'kree are known for having one of the most stable, least overtly quarrelsome, and long-lasting societies in Charted Space.


K'kree society is very different than what loose norms exist for Humaniti:

  • K'kree find any kind of carnivory or meat consumption to be both offensive and an extreme taboo. K'kree are not only willing to go to war over such matters, but have actually done so.
  • K'kree find the great diversity of Human societies to be incredibly strange. K'kree societies are far more uniform and basic K'kree values and sensibilities are far more standard upon K'kree systems and worlds.
  • K'kree find the human penchant for argument and tolerance very strange compared to K'kree ideas on the same matters. What humans most often call "dissent", the K'kree call "heresy". They do not believe in any but the most limited tolerance for a lack of respect for elders or for unrestrained dissent. The human ideal of "freedom of Speech" practically doesn't exist within mainstream K'kree societies.
  • K'kree are extreme monophobes. They harbor a near suicidal fear of being alone. K'kree are almost never depicted alone within the visual arts. Even great leaders are always appeared with several colleagues nearby. K'kree sculpture almost never depicts a singular K'kree physical form.


K'kree have a vast variety of traditions and cultural practices including:

The K'kree believe in ecological preservation and practically worship the environment. They bring their nature with them on their starships or at least as much of it as their technology can permit. This idea of reverence for life does not extend to carnivores, which are to be eliminated at all costs.

This believe in the value of ecological preservation causes great feelings of guilt and some schisms within K'kree society as many early K'kree settlements suffered from unregulated industrial development early in K'kree interstellar expansion and colonization. Some think of this as an ideal that many leaders do not adhere to.

From Traveller Imperial Encyclopedia entry K'KREE

(ed note: Chee Lan is a Cynthian, an alien resembling an angora cat. Adzel is a Wodenite, resembling a cross between centaur and a dragon. The team is trying to figure out the psychology of the Shenna of Dathyna.)

He drained his beer. Soothed thereby, he lit his pipe, settled back, and rumbled, "We got our experience and information. Also we got analogues for help. I don't think any sophonts could be total unique, in this big a universe. So we can draw on our understanding about other races.

"Like you, Chee Lan, for instance: we know you is a carnivore—but a small one—and this means you got instincts for being tough and aggressive within reason. You, Adzel, is a big omnivore, so big your ancestors didn't never need to carry chips on their shoulders, nor fish either; your breed tends more to be peaceful, but hellish independent too, in a quiet way; somebody tries for dictating your life, you don't kill him like Chee would, no, you plain don't listen at him. And we humans, we is omnivores too, but our primate ancestors went hunting in packs, and they got built in a year-around sex drive; from these two roots springs everything what makes a man a human being. Hokay? I admit this is too generalistic, but still, if we could fit what we know about the Shenna in one broad pattern—"

On Dathyna, the predicament was worse. The solar bombardment was always greater than Earth receives. At the irregular peaks of activity, it was very much greater. Magnetic field and atmosphere could not ward off everything. Belike, mutations which occurred during an earlier maximum led to the improbable result of talking, dreaming, tool-making herbivores. If so, a cruel natural selection was likewise involved: for the history of such a planet must needs be one of ecological catastrophes.

The next radiation blizzard held off long enough for the race to attain full intelligence; to develop its technology; to discover the scientific method; to create a worldwide society which was about to embark for the stars, had perhaps already done it a time or two. Then the sun burned high again.

Snows melted, oceans rose, coasts and low valleys were inundated. The tropics were scorched to savanna or desert. All that could be survived. Indeed, quite probably its harsh stimulus was what produced the last technological creativity, the planetary union, the reaching into space.

But again the assault intensified. This second phase was less an increase of electromagnetic energy, heat and light, than it was a whole new set of processes, triggered when a certain threshold was passed within the waxing star. Protons were hurled forth; electrons; mesons; X-ray quanta. The magnetosphere glowed with synchrotron radiation, the upper atmosphere with secondaries. Many life forms must have died within a year or two. Others, interdependent, followed them. The ecological pyramid crumbled. Mutation went over the world like a scythe, and everything collapsed.

No matter how far it had progressed, civilization was not autonomous. It could not synthesize all its necessities. Croplands became dustbowls, orchards stood leafless, sea plants decayed into scum, forests parched and burned, new diseases arose. Step by step, population shrank, enterprises were abandoned for lack of personnel and resources, knowledge was forgotten, the area of the possible shrank. A species more fierce by nature might have made a stronger effort to surmount its troubles—or might not—but in any event, the Dathynans were not equal to the task. More and more of those who remained sank gradually into barbarism.

And then, among the barbarians, appeared a new mutation.

A favorable mutation.

Herbivores cannot soon become carnivores, not even when they can process meat to make it edible. But they can shed the instincts which make them herd together in groups too large for a devastated country to support. They can acquire an instinct to hunt the animals that supplement their diet—to defend, with absolute fanaticism, a territory that will keep them and theirs alive—to move if that region is no longer habitable, and seize the next piece of land—to perfect the weapons, organization, institutions, myths, religions, and symbols necessary—

—to become killer herbivores.

And they will go farther along that line than the carnivora, whose fang-and-claw ancestors evolved limits on aggressiveness lest the species dangerously deplete itself. They might even go farther than the omnivora, who, while not so formidable in body and hence with less original reason to restrain their pugnacity, have borne arms of some kind since the first proto-intelligence developed in them, and may thus have weeded the worst berserker tendencies out of their own stock.

Granted, this is a very rough rule-of-thumb statement with many an exception. But the idea will perhaps be clarified if we compare the peaceful lion with the wild boar who may or may not go looking for a battle and him in turn with the rhinoceros or Cape buffalo.

The parent stock on Dathyna had no chance. It could fight bravely, but not collectively to much effect. If victorious in a given clash, it rarely thought about pursuing; if defeated, it scattered. Its civilization was tottering already, its people demoralized, its politico-economic structure reduced to a kind of feudalism. If any groups escaped to space, they never came back looking for revenge.

A gang of Shenna would invade an area, seize the buildings, kill and eat those Old Dathynans whom they did not castrate and enslave. No doubt the conquerors afterward made treaties with surrounding domains, who were pathetically eager to believe the aliens were now satisfied. Not many years passed, however, before a new land-hungry generation of Shenna quarreled with their fathers and left to seek their fortunes.

The conquest was no result of an overall plan. Rather, the Shenna took Dathyna in the course of several centuries because they were better fitted. In an economy of scarcity, where an individual needed hectares to support himself, aggressiveness paid off; it was how you acquired those hectares in the first place and retained them later. No doubt the sexual difference, unusual among sophonts, was another mutation which, being useful too, became linked. Given a high casualty rate among the Shenn males, the warriors, reproduction was maximized by providing each with several females. Hunting and fighting were the principal jobs; females, who must conserve the young, could not take part in this; accordingly, they lost a certain amount of intelligence and initiative. (Remember that the original Shenn population was very small, and did not increase fast for quite a while. Thus genetic drift operated powerfully. Some fairly irrelevant characteristics like the male mane became established in that way—plus some other traits that might actually be disadvantageous, though not crippling.)

At length the parricidal race had overrun the planet. Conditions began to improve as radiation slacked off, new life forms developed, old ones returned from enclaves of survival. It would be long before Dathyna had her original fertility back. But she could again bear a machine culture. From relics, from books, from traditions, conceivably from a few last slaves of the first species, the Shenna began rebuilding what they had helped destroy.

But here the peculiar set of drives which had served them well during the evil millennia played them false. How shall there be community, as is required for a high technology, if each male is to live alone with his harem, challenging any other who dares enter his realm?

The answer is that the facts were never that simple. There was as much variation from Shenn to Shenn as there is from man to man. The less successful had always tended to attach themselves to the great, rather than go into exile. From this developed the extended household—a number of polygynous families in strict hierarchy under a patriarch with absolute authority—that was the "fundamental" unit of Shenn society, as the tribe is of human, the matrilineal clan of Cynthian, or the migratory band of Wodenite society.

The creation of larger groups out of the basic one is difficult on any planet. The results are all too likely to be pathological organizations, preserved more and more as time goes on by nothing except naked force, until finally they disintegrate. Consider, for example, nations, empires, and world associations on Earth. But it need not always be thus.

The Shenna were reasoning creatures. They could grasp the necessity for cooperation intellectually, as most species can. If they were not emotionally capable of a planet-wide government, they were of an interbaronial confederacy.

Especially when they saw their way clear to an attack—the Minotaur's charge—upon the stars!

From SATAN'S WORLD by Poul Anderson (1968)

(ed note: WARNING: Spoilers for "Prey" by Paradigmblue

The League of Species High Council, Messier 18 Cluster, Carina-Sagittarius Arm, is planning to send their grand fleet to the home system of a new upstart race called the Rashan, and put them in their place. There were rumors that the Rashan species developed from predator stock. However, everybody knows that is just science fiction. All known interstellar races are descendants of herbivore prey species. It is impossible for predators to develop the cooperation required for civilization.

So the League fleet will use standard herbivore tactics which have brought victory time and time again against upstart herbivore species...

The foolish League is fortunate indeed that the secretive new species who just joined the League are concealing a useful secret. The new species called "Humans". The ones who always wear full environment suits with opaque helmets, so that nobody knows what they look like.

At the council of war, the voting member species are shocked when the Dreeden ambassador yield their speaking time to the Human delegation.)

      “Thank you, Admiral.” The ambassador passed his speaking stone to a delegation directly to their right. “The Dreeden yield their time to representatives of the Terran People. May I introduce to you Ambassador Baden Woods and Admiral Patricia Davies of the Associated Republics of Terra.”
     Another bipedal figure accepted the Dreedle’s speaking stone. This “Terran” stood twice the height of Ambassador Dreeden. Other than the species possessing two limbs for locomotion and two arms for grasping, not much else was discernible to Nuryaw, as the entire Terran delegation seemed to be wearing full environmental suits with entirely opaque helmets. Nonetheless, there was something about their appearance that made Admiral Nuryaw uneasy, as if these Terrans tickled a half-forgotten memory.

     “Honorable Species of the League, Admiral Nuryaw, we thank you for your time. You do our young species honor to have our words heard by species as wise and as powerful as yours. You have fought many wars, and won many victories.” The human ambassador took a long pause. “Unfortunately, we do not believe this strike against the Rashan will be one of them.”
     If the spectacle unfolding on the security council chamber floor didn’t have every delegation’s attention before, it certainly did now. Nuryaw’s hackle-spines raised along her back. “You presume too much, calfling.” While the information about the Terrans she had been able to pull up on her screen was surprisingly sparse, with remarkably little about the physiology of the creatures beneath their environmental suits, the entry about how recently they became a space-faring species told her enough. “The Bonth were fighting interstellar war while your species was using stone tools. You jeopardize your future membership in the league by presuming you have a superior military analysis of the situation.” Around the Security Council chambers, [assent] was signaled by most of the delegations.
     “You are correct, of course, Admiral, with the Bonth leading its fleets, the League has prospered for millennia. We do not assume to question your tactical analysis, but only to suggest that it was made with incomplete information.” Ambassador Woods replied. “We have reason to believe that the Rashan will not wage war in the manner that you expect. We believe that they are a predator species.”

     Nuryaw stifled a laugh. “A predator species? A sentient, space-faring predator species? Don’t waste our time with that horror story.” Other security council members were not as successful at containing their laughter. “Simple calfing,” Nuryaw sighed, “Three thousand years this League has policed this corner of the Galaxy. Over a thousand sentient species under its protection,” she gestured over the gathered delegations with her fore-hoof. “And never has any of them encountered a sentient — or even close to sentient — predator.”
     “Surely you have access to the League’s database. It is the struggle against simple predators that evolves sentience! That forces species to use tools! It was our ancestral struggle as prey that was the crucible that forged every species in this League. Predators? Flesh eaters? Capable of space travel? I’m afraid you are mistaken, Terran.” Nuryaw moved once more to adjourn the session, only to hear the Terran speak once more. Her hackle-spines rose again in agitation, but Ambassador Woods didn’t seem to notice.
     “As implausible as it may seem, it is the truth Admiral. Our intelligence sources managed to find visual records of Rashans outside of their combat armor during one of their recent incursions into league space. Those records show that the Rashans have forward-facing eyes, and we believe teeth-analogs that indicate a carnivorous diet. They are predators, and they will wage war like them. Admiral Davies can elaborate, but their tactics will be nothing like those you have fought against before, and if you use the battle plan proposed today, your fleet will not survive.

     Despite the Terran Ambassador’s opaque helmet, Nuryaw felt his gaze on her and again repressed a feeling of unease. What was it about this creature that created that reaction? She brushed the thought aside. “Enough! This council will not be distracted by scientific impossibilities!” Nuryaw once again raised the gavel-stone to adjourn, and grunted with frustration as the symbol for [dissent] blinked insistently above Ambassador Nesh’s head. “You and your pets are trying my patience, Ambassador Nesh.” Nuryaw’s hackle-spines were now fully raised.
     “If it may please the security council, we would like to suggest an addendum to the battle plans. It is obvious that our Terran friends are terribly ignorant in the ways of war-making, and have let superstition guide their analysis. Surely they have misinterpreted the data. We believe that this could be a learning experience for such a young species, however. What better way for the Terrans to see that there is nothing to fear than to see the League in action?”, the Dreeden Ambassador implored. “Let the Dreeden military escort a small contingent of Terran ships to observe the battle to see for themselves that the mighty League fleet led by the Bothian vanguard will easily route the Rashan from the field.”
     Nuryaw waved a fore-hoof in exasperation. “If that is what it will take for the Dreeden to quit interrupting these proceedings, then so be it. I will not have their ships interfering with my line of battle, however.”
     “Of course not, Admiral,” Nesh bowed in the direction of the table. “We would only ask that our escorts and Terran calflings be allowed to engage any targets of opportunity, so that we may have the honor in fighting alongside a League battlefleet.”
     “You ask for much, but I see no reason to deny your request. How votes the council?”
     [Assent] appeared across the council chambers, and finally, Nuryaw was able to bring the gavel-stone down. As the delegations filtered out of the meeting hall, however, Nuryaw pondered her screen. Of course, the Terran’s claims were preposterous, but what was it about their appearance that bothered her so much, and why wasn’t she able to find any information on what they looked like under those suits?

(ed note: because Humans are indeed descendants of predators, and of all the League species only the Dreeden know)

(ed note: Later, in secret, Nesh the Dreeden ambassador consults with the human delegation. The humans are disgusted that the League did not listen to reason, and the entire League fleet will probably be destroyed by the Rashan. They have to figure out how to save the League fleet in spite of themselves)

     “I can’t help wonder if it would have helped for us to take our helmets off, to show them what we were,” Patricia mused, taking a slow sip.
     Nesh shook his head sadly. “We’ve been over this Admiral Davies. You know the reaction that my species had when you made contact with us. Predators in space! You’re the very things that our science-fiction authors have used for imaginary villains for centuries, and that swarm-mothers frighten their hatchlings with. I’m not sure if you can ever understand the instinctual reaction that we experienced when we encountered your species. We killed the last predator that preyed on our kind thousands of years ago, but still, we felt nothing but fear when we first saw you.
     “If you had taken off your helmet in that council session, the only thing you would have accomplished was to start a stampede that would have killed delegates, which isn’t a good opening argument. Gods knows where our relations would be if it weren't for the Vert slavers posing a common threat. Even then, after your fleet rescued our people held captive by the Vert when the League wouldn’t lift a finger, we still had those among us who wondered if you had eaten a few Dreeden on the way back.” Nesh sighed. “No, they are not ready for the Terran's secret yet, and even if they were, it would not have swayed them from their plan.”

(ed note: in the League fleet)

     “Line of Battle transit complete Admiral Nuryaw!”
     Nuryaw nodded to the over-enthusiastic Vice-Admiral. “Status report please.” It felt good to be away from the security council chamber and back on the bridge of her flagship, Flashing Hooves. Three million tons of warship vibrated beneath her, and it was hers to command. The battle-couch conformed to her carapace as she leaned toward her tactical screens, watching the other ships in her fleet pop into existence as light from their arrival reached the Hooves. 14 other Bothian dreadnaughts like her own made up the vanguard of the fleet, while the rest of the primary security council species contributed their own dreadnaught contingents. Less dominant species contributed battleship squadrons, while the least powerful among them made up the fleet train of tenders and supply ships.
     “I read the briefing packet as well,” Nuryaw said icily. “What is the disposition of Rashan forces in the system?”
     “We’re showing a large Rashan fleet between the orbits of the third and fourth planets. Direct line intercept takes us within 2 million miles of the gas giant.”
     “Make it so.” Nuryaw pointed a grasping-hoof forward, toward the waiting Rashan Fleet.
     The ships of the League crawled forward, moving into a wall of battle as they did. Behind the fleet, more vessels blinked into existence.

     A new mass of ships blinked into existence on Nuryaw’s holo-screen. “That’s not the fleet train.”
     “No Admiral, it appears to be the Dreeden contingent with their human observers.” The vice-admiral squinted at a tactical screen. “Their jump spacing is surprisingly tight.”
     Nuryaw grunted. She had noticed how tightly packed the ships were as well, exiting jump-space in neat formation, rather than scattered over several million kilometers like the rest of the Security Council joint fleet. “It could be the Dreeden kept some of their jump technology from us when they joined the League — make a note for an investigation committee once we return.”
     The Dreeden-Human fleet was an odd composition. Instead of battleships and dreadnaughts, the force was comprised of many smaller ships, not fit for the League battle-line. There were two larger vessels, but they appeared to be support vessels rather than warships, with few weapons visible to Naryaw’s dreadnaught’s powerful scanners. Lighter spacecraft that appeared to Nuryaw to be only frigates and destroyers, some with Dreeden ID codes, screened the two support ships. Near the center of the formation, two cruiser-sized ships joined the massive support craft.
     “Hmmph,” Naryaw flicked a grasping hoof dismissively. “It is no wonder the humans thought this battle was lost. They don’t even know how to form a proper wall of battle. Vice-Admiral, it’s time to show them and the Rashan why the Bonthan battle-fleet has not been bested in millennia. Plot an intercept with the Rashan fleet and take us in.”

(ed note: in the Human fleet)

     Their conversation was interrupted by the Admiral’s flag-lieutenant. “Ma’am, the League fleet has begun to accelerate well-ward (toward the planet's gravity well). Estimates show that they will cross the orbit of the gas giant in 13 hours.”
     “Thank you, lieutenant.” Admiral Davies manipulated her console, patching her through to the captains of her small fleet. “All ships, set condition three. Maintain current relative position. No flight ops from any ships without my direct orders.” In the flag bridge, the red lights that had bathed the room were replaced with standard lighting as the ship stood down from condition one.
     “Why not launch the fighters Admiral? In every operation I’ve observed before, your carrier's launch their CAP as soon as they exit their jump.” Nesh asked.
     “Currently, the Rashan don’t know we use small craft. I’d like to keep it that way as long as we can.” The admiral ran a hand through her close-cropped hair. “Get some rest Ambassador. I just hope that we’ll be able to save some of them.”

(ed note: in the League fleet)

     The battle-wall of the League fleet closed with the Rashan forces arrayed to face them. From Naryaw’s view-screens, a small, orange disk came into view, the outermost planet of the system.
     “Has there been any changes in the disposition of the Rashan fleet Vice-Admiral?”
     “No admiral Naryaw, they are still arrayed in a small wall of battle, facing our approach.” The vice-admiral switched the main view screen to a representation of the Rashan fleet. "We count five dreadnaughts and 18 battleships, plus a surprisingly large amount of cruiser and destroyer sized vessels.”
     “Re-broadcast our demand to surrender, vice-admiral. While I’m impressed such a minor species can field that many dreadnaughts, if they fight, it will be a short engagement.”
     Naryaw hoped they didn’t surrender. It had been too long since she had led the Flashing Hooves in battle. She also took some satisfaction in knowing that she would be showing those impertinent Dreeden and Humans how a league battle-fleet waged war.

     “Admiral, we’re receiving a transmission from the Dreeden-Human joint fleet.”
     Naryaw turned to the communications officer. “Well, what is it?”
     “It’s from the human Admiral. It’s is a warning. They believe that there is a second Rashan fleet hidden in the gas giant. They advise that we adjust course to veer away from the planet, and then re-approach so that our wall of battle faces both the Rashan fleet and the planet.
     Naryaw snorted angrily. “Remind the human admiral,” Naryaw chewed out each world, “That they are here as observers, not tactical advisors. If they offer any more unsolicited advice, their participation in this battle even in observer capacity will be terminated.” The gall! Naryaw realized that her hackle-spines were nearly fully extended, and made a conscious effort to retract them. It wasn’t seemly for her to seem agitated in front of the crew. “And ask what possible reason the human admiral would have to suspect there to be another Rashan force hidden in the gas giant.
     Naryaw fumed as they waited for a reply. Without FTL communication, the delay was maddening.
     “Admiral Naryaw, the humans conveyed their apologies, and have said that they will not make further tactical suggestions.” The comm officer paused, as the remainder of the message was received. “As to why they suspect a second Rashan fleet, the human admiral has replied with “Because that is what I would do.”
     “And that is why they are with the supply ships, and we are with the battlefleet.” The vice-admiral chuckled.
     “They are cowards,” Naryaw scoffed. “Tell them to watch the fleet carefully. We will show them what honor looks like.”

     “That was one of their battleships, Admiral. The first kill is ours.”
     “And their response?”
     “None yet admiral, they are holding their position and have not yet returned fire.”
     “Strange,” muttered Naryaw. “If they can’t match our weapons range, I would expect them to attempt to close the range as quickly as possible. Are we close enough for a visual of a Rashan ship? Put it on screen. It’s time we see what we’re dealing with.”

     The main holo-screen flared to life, with an image of one of the Rashan dreadnaughts. Naryaw felt a chill go through her bones, and her hackle-spines began to extend unconsciously. She was not the only one on the Flashing Hooves’ bridge with that reaction, she noticed. The Rashan ship was shaped like a blunted wedge, with numerous forward facing weapon placements. The rear of the wedge tapered slightly until the taper reversed as it met huge engine cowlings at the anterior of the ship. Where League ships were almost always shaped like half-spheres, presenting a hedgehog-like array of defenses and weaponry to the enemy while the flat portion of the flat sphere contained their engines, the Rashan ship appeared to be designed for pursuit.
     Unbidden, the memory of the council meeting flashed in Naryaw’s mind: We believe they are a predator species.
     Naryaw shook herself, metals ratting on her carapace. She was a Bonthan! Leader of the combined fleet! She would not let herself be unnerved by this opponent, especially one that had not even drawn blood. Still, she didn’t want to look at the ship on screen any longer. “That’s enough, vice-admiral.”

(ed note: in the Human fleet)

     Icons on the holographic tac-plot showed the League fleet closing with the Rashan battle-wall, which held its position.
     Admiral Davies sighed. “It’s as I feared. They’re letting the League fleet come to them, drawing them core-ward. Once they League fleet is fully committed, they’ll make their move.”
     “Isn’t there something we can do Admiral?”
     Admiral Davies shook her head. “I don’t think there is, Ambassador. Every attempt at warning Admiral Naryaw has been rebuffed. I’m afraid if we press the issue we’ll be ordered to jump out of the system. All we can do now is try and ensure that some of the League fleet lives through the day.”

     Suddenly, the tac-plot shifted. The Rashan battle-wall dissolved in space, reforming into arrow-shaped formations that began to accelerate toward the League ships. From each Rashan battleship and dreadnought, more icons emerged, hundreds of tiny contacts on the tac-plot.
     “They’ve released skirmishers (large space fighters), Admiral.” Davie’s flag-lieutenant reported.

(ed note: in the League fleet)

     Aboard the Flashing Hooves, Admiral Naryaw was at a loss to explain the Rashan’s behavior. Their entire wall of battle had disintegrated and reformed, and now instead of facing a traditional battle-wall, the League fleet instead was closing with five Rashan formations that were angling to the sides of the League battle wall, each formation lead by one of the Rashan’s dreadnaughts. What’s more, the Rashan’s cruisers and destroyers had formed up into these formations, and hundreds of tiny craft had emerged from the Rashan capital ships.
     “Vice Admiral, report!”
     “Yes Admiral.” The vice admiral's voice strained as he struggled to keep up with the new flood of data coming in. “It seems like the Rashan fleet is comprised of five squadrons of one dreadnaught and 3-4 battleships each, with approximately twenty cruisers and destroyers. They also have launched hundreds of what appear to be parasite craft. Each Rashsan squadron is headed spinward on a different heading.”
     “Could they be running?”
     “Unlikely, vice-admiral. The Rashan squadrons are estimated to meet the edges of our wall of battle. If they wished to run, they would have avoided us all together.’
     “Noted.” Naryaw was perplexed. Space battle was fought by bringing your wall of battle to the enemy, locking horns with them to determine the stronger force. The weaker fleet then surrendered. That was the way every space battle the League had fought in its history. These Rashans, they were doing something different, and Naryaw didn’t like it. “All ships, divide fire by sectors, bring them down before they close. Vice Admiral, divide our wall of battle into five smaller units — each one will maneuver to face one of the Rashan thrusts.” Naryaw tried to exude as much calm as possible, but inside, she was nervous. She hadn’t been nervous since her first command.
     “Yes Admiral Naryaw. Re-forming fleet now.”

     In space, the million-mile wide formation of the League fleet clumsily fractured into five square planes, each one attempting to angle their mushroom-cap shaped vessels toward the approaching Rashan. The reorganization was clumsy, ship captains reacting slowly to the unfamiliar orders. Some of the squares were larger than others, with individual League species choosing to keep their ships together rather than splitting them between multiple battle-walls.
     “Admiral, we’re beginning to take fire. Lasers, and particle beams.” The view-screens flashed white. “That was one of the Queel battleships. It appears that the each Rashan squadron is focus firing on one of their targets at a time. The Queel ship’s shields were overwhelmed.
     Naryaw clenched her grasping hooves in frustration. “Continue maneuvers; we still outgun them by a significant margin.” As if on cue, a Rashan battleship winked off the display, victim to Bonthan lasers.
     “Admiral, the Rashan are accelerating. Two of our five battle-lines will not reform before the Rashans reach them. Readings show that Rashan ships can accelerate nearly twice as fast as ours.”
     The five Rashan squadrons poured on the speed, lancing toward the League battle-walls. Re-formed League formations met three of them, raining laser fire onto the approaching ships. Two of the Rashan squadrons, however, reached the League vessels before they could turn and face them. Racing along the edge of the League formations, they picked off ship after ship as they brought their entire squadrons firepower to bear on one ship at a time, while the League ships struggled to keep their rounded half-spheres faced toward the Rashan.

     Then, unthinkably, the Rashan cruisers and destroyers separated from the rest of their squadrons and penetrated the wall of battle itself.

     The League wall of battle was designed to face other similarly arrayed formations; trading blows across space. Victory went to the fleet that blinked last. For thousands of years, this was how the League joined battle. For thousands of years, it’s crews and ships had been trained and designed for this kind of fighting. No one, it appeared, had informed the Rashans that this is how things were done.

     As the smaller Rashan vessels raced through the heart of the League formations, the battle-walls disintegrated. Each ship struggled to keep its armored facing pointed toward the Rashan cruisers and destroyers that sliced through their ranks. What’s worse, hundreds of Rashan skirmisher craft joined the battle, weaving and corkscrewing between the League capital ships. The League fleet was caught completely unprepared. With their massive, well-armored capital ships designed for engagements against other capital sized combatants, none of them possessed significant point defense, allowing the Rashan skirmishers to make strafing runs all but unmolested.
     Individually, these small craft were nothing but an annoyance, but in numbers they were deadly. There were too many and too fast to keep the armored mushroom-caps of the League ships pointed toward them, and the small Rashan craft exploited this mercilessly, raking fire across the vulnerable anterior of the League ships, where their armored half-sphere shell did not protect. As a ship was damaged and fell out of formation, the Rashan fighters swarmed the disabled vessel, like so many piranhas that smelled blood.
     Admiral Naryaw gaped as her command fell apart around her. Sirens sounded through her ship as it rocked from explosions and particle beam impacts. Acrid smoke from fried circuitry filled the bridge as the air handlers struggled to keep up. On her holo-screen, she watched helplessly as more and more League ships winked out. Closing her eyes, she uttered words that had not been said by a Bonthan admiral in living memory. “All ships, retreat.”

(ed note: in the Human fleet)

     “Why are we not meeting the League fleet along their retreat path?” He managed to squeeze out between labored breaths.
     “I thought I said no questions.” Admiral Davies wheezed in reply. A moment later, she relented. “That won’t be able to retreat that way. Any moment now, they will pass near the gas giant, and when they do…”
     “Admiral, we’re receiving a full spectrum transmission, it appears to be originating from the fourth planet. Audio and visual.” It was a testament to the communication tech’s high-g training that they were able to get the strained report out through clenched abdominal muscles.
     “Patch it through.”
     “Oh my gods.” Nesh gasped. .

     An image of a Rashan replaced the tac-plot on the bridge's holo-screen. Its appearance was vaguely vulpine, but with smooth, hairless skin and four, forward facing eyes. Even with the creature's mouth closed, Nesh could see sharp, serrated teeth. Its head sat upon a long, lean bipedal body. Two powerful arms ended in three mandibles, each tipped with a thick claw. From the creature’s chest, two smaller arms emerged, each ending in six delicate manipulators. It wore a uniform of iridescent purple, with what appeared to be rank insignia or awards across the breast. Nesh quivered in his acceleration couch. It felt like its eyes were looking directly at him, and age-old instincts screamed at Nesh to do what his people had done when a predator looked at you for millions of years. You run. Nesh glanced over at Admiral Davies, who appeared unphased.
     “I have to say,” the Rashan spoke in galactic basic. “It is... convenient when prey comes to us. You have more fight than most, and it seems that you have many systems. We look forward to our new hunting grounds.” The broadcast cut off, and the flag-bridge was silent for a moment.

     “Admiral Davies! Contacts reported rising from the atmosphere of the gas giant. It’s a second Rashan fleet.”

     Naryaw could not believe her eyes. Hundreds more Rashan ships rose from the surface of the gas giant, moving to cut off their retreat to the edge of the system where they could jump to safety.
     The broadcast replayed in her mind, those four, forward-facing eyes that seemed to look directly at her, paralyzing her with fear. The eyes of a predator. She had dismissed the humans so easily in council, so sure of her success, but now...
     Her vice-admiral was reduced a blubbering wreck, eyes rolling in terror. The rest of the bridge crew were no better, all of their hackle spines fully extended in agitation and fear. From the smell, at least one of them had wet themselves.
     Around the Flashing Hooves, ships were dying, each one taking thousands of crew-members with them, and now their escape to the jump point was cut off. Throughout the fleet, the transmission from the Rashan had dissolved all semblance of fleet discipline. Some ships sat still in space, paralyzed by their captains fear. Others fled the battle in random directions, as Rashan ships followed them and picked them apart one by one. Naryaw felt the eyes of her bridge crew on her, waiting for her leadership, waiting for her to save them, waiting for an order. Naryaw had never felt like this, paralyzed by fear, incapable of thinking clearly. For the first time she could remember, she did not know what to do.

     “Ma’am, incoming transmission from the Dreeden-Human fleet, audio only.” Her comm officer at least had managed to maintain his discipline. “It’s the human admiral again. She says that she has moved their combined fleet to these coordinates,” an icon flashed on the holo-screen, showing the location. “She urges you to rendezvous with her fleet, where she can cover our escape. She says if you don’t move to do so in the next five minutes, you’ll be trapped between the Rashan fleets.”

(ed note: and then the Rashan fleets learn the hard way that instead of a medium swarm of multi-crewed skirmisher ships, the human fleet has a huge swarm of two-crewed space fighters. All the human ships have massive point-defence suites. And the humans are predators too.)

From PREY by Paradigmblue (2017)

Square-Cube Law

Back in the 1950s a popular scifi b-movie trope was giant insects and other monsters. Not to mention Godzilla. These were quite popular at the time. A pity they are yet another iconic scifi trope that science grinds into the dirt while saying You Can't Do That.

The minor problem with Big Bugs is that insect's crude stand-in for actual lungs is utterly incapable of absorbing enough oxygen to keep the blasted critter alive. Not when scaled up to monster size, at any rate.

But the main problem is the pesky Square-Cube Law.

When an object undergoes a proportional increase in size, its new surface area is proportional to the square of the multiplier and its new volume is proportional to the cube of the multiplier. In English: if you enlarge a bug with blue Pym-particles its weight will grow much faster than its skin.

For example, if you double the size (measured by edge length) of a cube, its surface area is quadrupled, and its volume is increased to eight times its original volume.

This creates many problems.


To the mouse and any smaller animal it presents practically no dangers. You can drop a mouse down a thousand-yard mine shaft; and, on arriving at the bottom, it gets a slight shock and walks away, provided that the ground is fairly soft. A rat is killed, a man is broken, a horse splashes.

For the resistance presented to movement by the air is proportional to the surface of the moving object. Divide an animal’s length, breadth, and height each by ten; its weight is reduced to a thousandth, but its surface only to a hundredth. So the resistance to falling in the case of the small animal is relatively ten times greater than the driving force.

A typical small animal, say a microscopic worm or rotifer, has a smooth skin through which all the oxygen it requires can soak in, a straight gut with sufficient surface to absorb its food, and a single kidney. Increase its dimensions tenfold in every direction, and its weight is increased a thousand times, so that if it is to use its muscles as efficiently as its miniature counterpart, it will need a thousand times as much food and oxygen per day and will excrete a thousand times as much of waste products.

Now if its shape is unaltered its surface will be increased only a hundredfold, and ten times as much oxygen must enter per minute through each square millimetre of skin, ten times as much food through each square millimetre of intestine. When a limit is reached to their absorptive powers their surface has to be increased by some special device. For example, a part of the skin may be drawn out into tufts to make gills or pushed in to make lungs, thus increasing the oxygen-absorbing surface in proportion to the animal’s bulk. A man, for example, has a hundred square yards of lung. Similarly, the gut, instead of being smooth and straight, becomes coiled and develops a velvety surface, and other organs increase in complication. The higher animals are not larger than the lower because they are more complicated. They are more complicated because they are larger.

Comparative anatomy is largely the story of the struggle to increase surface in proportion to volume.Some of the methods of increasing the surface are useful up to a point, but not capable of a very wide adaptation.

For example, while vertebrates carry the oxygen from the gills or lungs all over the body in the blood, insects take air directly to every part of their body by tiny blind tubes called tracheae which open to the surface at many different points. Now, although by their breathing movements they can renew the air in the outer part of the tracheal system, the oxygen has to penetrate the finer branches by means of diffusion. Gases can diffuse easily through very small distances, not many times larger than the average length traveled by a gas molecule between collisions with other molecules.

But when such vast journeys—from the point of view of a molecule—as a quarter of an inch have to be made, the process becomes slow. So the portions of an insect’s body more than a quarter of an inch from the air would always be short of oxygen. In consequence hardly any insects are much more than half an inch thick. Land crabs are built on the same general plan as insects, but are much clumsier. Yet like ourselves they carry oxygen around in their blood, and are therefore able to grow far larger than any insects.

If the insects had hit on a plan for driving air through their tissues instead of letting it soak in, they might well have become as large as lobsters, though other considerations would have prevented them from becoming as large as man.



If an animal were isometrically scaled up by a considerable amount, its relative muscular strength would be severely reduced, since the cross section of its muscles would increase by the square of the scaling factor while its mass would increase by the cube of the scaling factor. As a result of this, cardiovascular and respiratory functions would be severely burdened.

In the case of flying animals, the wing loading would be increased if they were isometrically scaled up, and they would therefore have to fly faster to gain the same amount of lift. Air resistance per unit mass is also higher for smaller animals, which is why a small animal like an ant cannot be seriously injured from impact with the ground after being dropped from any height.

As was elucidated by J. B. S. Haldane, large animals do not look like small animals: an elephant cannot be mistaken for a mouse scaled up in size. This is due to allometric scaling: the bones of an elephant are necessarily proportionately much larger than the bones of a mouse, because they must carry proportionately higher weight. To quote from Haldane's seminal essay On Being the Right Size, "...consider a man 60 feet high...Giant Pope and Giant Pagan in the illustrated Pilgrim's Progress.... These monsters...weighed 1000 times as much as Christian. Every square inch of a giant bone had to support 10 times the weight borne by a square inch of human bone. As the human thigh-bone breaks under about 10 times the human weight, Pope and Pagan would have broken their thighs every time they took a step." Consequently, most animals show allometric scaling with increased size, both among species and within a species. The giant creatures seen in monster movies (e.g., Godzilla or King Kong) are also unrealistic, as their sheer size would force them to collapse.

However, the buoyancy of water negates to some extent the effects of gravity. Therefore, sea creatures can grow to very large sizes without the same musculoskeletal structures that would be required of similarly sized land creatures, and it is no coincidence that the largest animals to ever exist on earth are aquatic animals.

The metabolic rate of animals scales with mathematical principle named Quarter-power scaling according to the metabolic theory of ecology.

From the Wikipedia entry for SQUARE-CUBE LAW

How Large?

How big can ETs be? To answer the question we need to understand something called the Square-Cube Law. This universal geometrical principle, first recognized by Galileo more than three centuries ago, holds that volume always increases faster than surface area as size increases. A solid cubical box whose edge is doubled increases in surface area by a factor of two squared (2x2), or four; whereas volume, hence mass, increases by two cubed (2x2x2), or eight.

It’s easy to apply this to biology. Picture a bony extraterrestrial herbivore placidly grazing in some alien meadow. Suddenly we double its size all over. The animal’s leg bones, now twice as thick, have quadrupled in cross-sectional area; but the creature weighs eight times as much so its bones must sustain double the pressure. It may collapse under normal exertion unless it grows proportionally stouter limbs to handle the added physical stress.

All parts of an animal must be reengineered when size increases. Like bone, muscle strength is determined by cross-sectional area. Humanoids twice as large need quadruply thick biceps: otherwise they’d be pulling eight times the mass with only four times the force. Lungs, kidneys, intestines and other blood filtering organs function according to surface area, so must either increase in mass or become more convoluted at larger body sizes.

The horror movies about giant insects ravaging the countryside are really quite impossible, even on low-gravity worlds. A bug as large as a house would weigh a billion times more than its flea-sized Earthly cousins. Its thin spindly legs would be called upon to sustain stresses thousands of times greater. To walk at all the overgrown arthropod needs muscles proportionally thousands of times thicker; unfortunately, vital tissues already fill the hollow skeleton of the tiny original. It did not collapse under its own weight or was not immobilized by the feebleness of its muscles, an overgrown insect would starve to death because its stomach would be a thousandfold too small to absorb enough food; or it would suffocate because its tracheae could carry only a thousandth as much air as needed.

Sea creatures are free of gravity at neutral buoyancy, but still they’re dogged by the Square-Cube Law. Bodies in motion like to continue in motion – extraterrestrial leviathans larger than whales would experience serious steering, turning and braking difficulties because of their relatively great mass compared to the area of their control surfaces. Cornering too fast might cause stresses in excess of the tensile strength of biological materials and the behemoth would literally snap in two. These problems are familiar to pilots of modem supertankers, huge ships requiring kilometers to turn or stop.

From EXTRATERRESTRIAL ZOOLOGY by Robert A. Freitas Jr. (1981)

Body Type Classification

In his Lensman series, E.E. "Doc" Smith invents an alien body type classification system, though he gives precious few details. In the system, human beings are classified as AAAAAAAAAAAA to twelve places, and aliens have other letter codes depending upon how they vary from humans. The fifth place is for number and type of arms, the sixth is for number and type of legs, and seventh place is skin.

In other words it is sort of like a Geek Code or Traveller Universal Personality Profile (or other) for alien body types.

Orginally Traveller's UPP was a six place code, with each place filled by a hexadecimal numeral from 0 to F (decimal number from 0 to 15). Each place was a Role Playing Game character value: Strength, Dexterity, Endurance, Intelligence, Education, and Social Standing. So each of the characteristics could have a value from 0 to 15.

For other Traveller codes hexadecimal proved to not have enough precision, so they went with an ugly kluge called the Expanded Hexidecimal System. This used for numeral the number 0 to 9 and the letters A to Z (omitting the letters I and O since they were too easily confused with numerals 1 and 0). This allows values from 0 to 33.

...The thing's bodily structure was RTSL, to four places. No gross digestive tract - atmosphere-nourished or an energy-converter, perhaps. Beyond four places was pretty dim, but Q P arms and legs - Dhilian, eh? - would fit, and so would an R-type hide.

...As she was wafted gently across the intervening space upon a pencil of force, Kathryn took her first good look at the precisionist himself-or herself. She - it - looked something like a Dhilian, she thought at first. There was a squat, powerful, elephantine body with its four stocky legs; the tremendous double shoulders and enormous arms; the domed, almost immobile head. But there the resemblance ended. There was only one head-the thinking head, and that one had no eyes and was not covered with bone. There was no feeding head-the thing could neither eat nor breathe. There was no trunk. And what a skin!

It was worse than a hide, really-worse even than a Martian's. The girl had never seen anything like it. It was incredibly thick, dry, pliable; filled minutely with cells of a liquid-gaseous something which she knew to be a more perfect insulator even than the fibres of the tegument itself.

"R-T-S-L-Q-P." She classified the creature readily enough to six places, then stopped and wrinkled her forehead. "Seventh place-that incredible skin-what? S? R? T? It would have to be R . . .

..."VWZY, to four places." Con concentrated. "Multi-legged. Not exactly carapaceous, but pretty nearly. Spiny, too, I believe. The world was cold, dismal, barren; but not frigid, but he-it-didn't seem exactly like an oxygen-breather - more like what a warm-blooded Palainian would perhaps look like, if you can imagine such a thing. VWZYTXSYZY to ten places.

...Classification, straight Z's to ten or twelve places, she - or it - seemed to be trying to specify. A frigid race of extreme type, adapted to an environment having a temperature of approximately one degree absolute.

...physically, his classification to four places is TUUV; quite a bit like the Nevians, you notice.To ten places it was TUUVWYXXWT.

From CHILDREN OF THE LENS by E.E. "Doc" Smith (1947)

James White adapted the system to his Sector General novels, with the the more reasonable specification that human beings were not the measure of all things, i.e., in the Sector General system humans are classified as DBDG, not AAAAAAAAAAAA.

Conway muted the speaker which carried the conversation between ship and receptionist into the gallery and said, "This is as good a time as any to explain our physiological classification system to you. Briefly, that is, because later there will be special lectures on this subject."

Clearing his throat, he began, "In the four-letter classification system the first letter indicates the level of physical evolution, the second denotes the type and distribution of limbs and sense organs and the other two the combination metabolism and pressure and gravity requirements, which in turn give an indication of the physical mass and form of protective tegument possessed by the being. I must mention here, in case any of you might feel inferior regarding your classification, that the level of physical evolution has no relation to the level of intelligence...

Species with the prefix A, B and C, he went onto explain, were water breathers. On most worlds life had originated in the sea and these beings had developed high intelligence without having to leave it. D through F were warm-blooded oxygen-breathers, into which group fell most of the intelligence races in the galaxy, and the G and K types were also oxygen breathing but insectile. The Ls and Ms were light-gravity, winged beings.

Chlorine-breathing life-forms were contained in the 0 and P groups, and after that came the more exotic, the more highly-evolved physically and the downright weird types. Radiation-eaters, frigid-blooded or crystalline beings, and entities capable of modifying their physical structure at will. Those possessing extra-sensory powers sufficiently well-developed to make walking or manipulatory appendages unnecessary were given the prefix V, regardless of size or shape.

Conway admitted to anomalies in the system, but these could be blamed on the lack of imagination by its originators. One of the species present in the observation gallery was a case in point - the AACP type with its vegetable metabolism. Normally the A prefix denoted a water breather, there being nothing lower in the system than the piscatorial life forms. But the AACPs were vegetables and plants had come before fish.

From STAR SURGEON by James White (1963)

Alien Intelligence

The average level of intelligence of an alien species is anybody's guess. However, there are thought experiments suggesting that their intelligence would tend to be about the same as our own. Of course there might be outliers; morons on the planet Spengo and Pakled, super geniuses on Altair IV and Arisia. Or if they hit the Singularity and shoot off the top of the chart, turning into StarGods or something.


What is Intelligence?

Intelligence is much easier to talk about than to define. Webster calls intelligence “the power or act of understanding … the power of meeting any situation, esp. a novel situation, successfully by proper behavior adjustments ; also, the ability to apprehend the interrelationships of presented facts in such a way as to guide action toward a desired goal…"

Obviously, the dictionary does not define “intelligence” in the same way it defines more palpable terms like “height,” “weight,” or even “brain.” And note that the definition of “intelligence” is a subjective and external one. That is, to apply the definition, an outside observer must watch the antics of the creature in question and see if his behavior entitles him to be temed “intelligent.” Evidently there is no absolutely accurate way of measuring intelligence in the same manner that a physician can measure blood pressure or basal metabolic rate. Even an I.Q. test yields only a guide, an approximation.

Note also that the dictionary definition poses three tests for deciding if a creature is intelligent. The creature must “understand,” make “behavior adjustments,” and be able to “apprehend … interrelationships.” Understand, adjust, interrelate: certainly without these abilities a creature cannot be termed intelligent. Yet—every animal has the ability to recognize certain sets of sensory impressions, to interrelate them and adjust its behavior accordingly. The difference between intelligent man and unintelligent amoeba is in the degree of understanding, adjustment and interrelating.

More particularly, it has been said that the real test of intelligence is the ability to handle abstract thought. Animals live in the present, responding to immediate sense impressions. The past is meaningless and the future dimly perceived, if at all. Men live in a continuum of past, present and future. Man is evidently the only creature on Earth that can consciously conceive of a time that is not-yet. A male gibbon can make a sound that means “Keep away from my wife!” Imperative, immediate. A male human being can say, “If you don’t keep away from my wife, I will shoot you.” A choice of conscious actions which will take place in the future.

Intelligence, then, is a relative matter—something that may be judged qualitatively, but defies quantitative measurement.

All of which brings us to a rule-of-thumb test for intelligence: If a race of creatures has the ability to communicate, so that one individual of the species can share a pool of knowledge accumulated by the race as a whole, then we may say that the race is fully intelligent. This test carries within it the implications of abstract thought and communication, the ability to understand, adjust, and interrelate. Moreover, it implies that a truly intelligent race will be constantly adding to its pool of accumulated knowledge, as new individuals create and communicate new ideas. An intelligent race, in other words, will constantly change its environment —sometimes very slowly, sometimes explosively fast. This is what is usually meant when people speak of man’s “progress.”

Intelligent Species of Earth

Is man truly the only intelligent species on this planet? The social insects have accomplished remarkable achievements, and have survived many hundreds of times longer than man’s onemillion- year tenure on Earth. Some of the large sea-going mammals, such as the dolphins and killer whales, have large complex brains and the ability to make linguistic sounds. And there are other primates, particularly the chimpanzee, which show more intellect at birth than do human babies.

The social insects—particularly the ants—are a fascinating example of how complicated this problem of intelligence can be. A single ant is demonstrably dull. It can learn its way through a maze, but quickly forgets. It has not even the lowly intelligence of a mouse. Yet colonies of ants behave in a highly-organized fashion. There is division of labor, engineering and architecture, “nursing” of young, exploration, some degree of communication. The concept of group intelligence has often been raised in connection with the ants and other social insects.

Is an ant colony an intelligent, sentient creature composed of many unintelligent individuals? This is a bit hard for most human beings to accept, and yet an unbiased observer might point out that the human being is an intelligent, sentient creature composed of many unintelligent individual cells. A single brain cell is certainly not intelligent, yet it belongs to a system that is.

Let us apply our rule-of-thumb test to the ants, after making a slight mental adjustment that allows us to consider both an individual and a colony as a single creature. Have the ants been able to communicate and establish a pool of knowledge that can be shared by succeeding generations of colonies (and/or individuals)? The best answer that scientists can give today is: No. Apparently, everything the ants do, they do by instinct. They do not learn to speak, they are born with an instinctive communicative ability, and no ant can rise beyond the limitations of its instincts. Ants can perform prodigies of labor, but everything they do can be explained in terms of physical adaptions.

The final test of the ants’ intelligence is to compare their progress over the past million years with man’s. A million years ago, man-like primates were shambling through African forests. A hundred thousand years ago, human hunters were slaughtering every edible land animal on this planet. Ten thousand years ago, men invented agriculture and began to build cities. Today, humanity holds the power of the atom and has already begun to explore interplanetary space. And in all that time, the ants have changed their ways not at all.

Much the same argument can be applied to the dolphins. Recently there has been great interest in the relative intelligence of dolphins, and a Nobel Prizewinning scientist, Leo Szilard, has even written a science-fiction story that hinges on the credibility of intelligent, speaking dolphins. The main interest in this case is the large brain of the dolphin; it is larger than the human brain (about 1600-1700 grams compared to an average of 1400 for man), and structurally just as complex. Dolphins have been trained to imitate human voices. They evidently communicate among themselves in a primitive fashion. They are surprisingly bright, agile, and beautifully adapted to sea-faring. There are many, many stories, dating back to antiquity, of dolphins helping to save floundering human swimmers by buoying them up on their backs and carrying them to shore.

Admittedly, the scientific study of dolphins is just beginning. But to date, there is no really impressive evidence for an intelligence comparable to man’s. Despite their large and complex brains, the dolphins have shown an intelligence little better than a dog’s, and not as high as a chimpanzee’s. Their vocal abilities are on a par with a trained parrot’s, and stem mainly from their use of a vocal “sonar” in underwater navigation. However, man is at a distinct handicap in assessing dolphin intelligence, simply because we cannot watch the dolphins in their natural environment. It is only in the past ten years or so that we have built swimming tanks lai'ge enough to allow aquatic mammals to be studied.

In the open ocean, the dolphins are free-roaming hunters. They are playful and plentiful—two indications of at least some intelligence. Their cousins, the vicious, slightly larger killer whales, actually hunt in packs and show much ingenuity in attacking practically every type of sea-going mammal, including the gigantic blue whale. But, again, the killer whales have not shown a higher degree of intelligence than a pack of terrestrial wolves. If the dolphins or killer whales are as intelligent as man, their environment is so different from ours that we have, at present, no adequate method of gauging their talents. This is an important fact to keep in mind when considering the intelligence of creatures from alien planets.

Of all the potentially-intelligent animals of Earth, the chimpanzee is the closest to man, the most easily studied, and easily the brightest. In fact, for the first year or so after birth chimps actually learn more quickly than human babies. A one-year-old chimp can do a variety of tricks and even rasp out a few human words, if properly trained. The chimpanzee matures much more quickly than a human baby, both physically and mentally. But there is a cross-over point. Sometime during the second year, the human baby begins to learn how to speak. He starts to tap that reservoir of accumulated racial knowledge. The chimp, meanwhile, seems to get tired of doing tricks—the whole business of performing and saying words apparently becomes pointless to him. His “intellectual” development ends. In short, the human baby goes on to become human; the chimpanzee, despite a heroic effort, cannot be anything other than an ape.

The major reason for this is, of course, the relative sizes of the human and chimpanzee brain; man’s brain is some 3.5 times larger (1400 grams compared to about 400).

But there are other reasons also. In fact, many physical anthropologists now believe that man’s brain was the last part of him to become human. To bear this out they have unearthed evidence that points to the conclusion that man developed physically into human form before he developed mentally into Homo sapiens, thinking man.

Man's Five Gifts

The anthropologist Carleton S. Coon pointed out that man has five distinct features—five gifts—that distinguish him from the other primates: First, man stands erect and walks on two feet. This leaves him prone to backaches, due to the forced curvature of his primate spine. Man’s foot has fused into an arched load-carrier capable of supporting his body weight with no help whatsoever from the arms. The arch occasionally collapses and leaves man flat-footed. But even so, man’s overworked feet and aching back allow his hands complete freedom from the chore of locomotion.

Man’s remarkable hands are his second gift, and perhaps his most important. Once man becomes an erect biped, his hands are free to get into mischief—and also to pick fruit, to fold in prayer, to fashion a tool. Archeological evidence has shown that very primitive proto-men, creatures that were still mostly ape and had quite small brains, actually used tools. Anthropologists are now largely agreed that tools made man, not vice versa. Without his grasping hands, man could never have become a toolmaker. Human hands are more flexible, grasp better, and are capable of much more delicate manipulations than any of the primate apes’ (or, indeed, the grasping organs of any animal on Earth).

The ability to use his hands to grasp objects no doubt had much to do with man’s third gift—fine-focusing, stereoscopic, color vision. All the primates have good eyes, but man’s seem to be the best of the lot. Part of man’s visual acuity is probably due to the need to inspect very closely objects that his hands have picked up. A million years ago, man’s ancestors picked fruits and examined them carefully. Today, man uses the eyes he has developed to examine stars and atoms—and astronomers still insist that no camera made can equal the human eye’s ability to distinguish fine detail.

The first three of man’s five gifts were physical. The other two are mental. With feet capable of fleet running, hands free to seize the environment, the eyes sharp enough to spot a meal on the hoof from a distance of miles, man began to develop his ability to think. The anthropological evidence shows that man’s brain began to increase in size only after the rest of body became human. But once man’s brain did increase to its present size, it became his fourth gift.

Why and how man developed his brain is still a mystery. The plain truth is that man’s brain and his intelligence—is at least a full order of magnitude greater than that of his nearest rivals, the chimps. The dolphins, as we have seen, have larger brains. But, lacking hands, lacking the challenges and stimuli of a terrestrial environment, they have never developed their brains to the pitch that man has. The ants, clever and highly-regimented though they are, simply lack the brain size to break free of their instincts.

The fifth and final gift stems directly from man’s brain, and puts the final touch on his development of intelligence: it is his ability to speak. Not merely to make noises, as birds and monkeys and dolphins do. Not merely to communicate to few limited present-tense imperatives, as the ants and bees and some primate apes do. Man can speak. He can tell about the past, he can speculate about the future, he can unload his fears into the ear of a psychiatrist or a priest, he can recite poetry, he can argue physics, and metaphysics, he can add to—and draw from—an accumulation of knowledge that goes back to before the taming of fire.

The impact of this ability to speak must have been infinitely more meaningful to man’s development than its paler counterpart of historic times—the invention of printing. The ability to speak far beyond the range of the unaided voice, through books, ushered in the scientific age. Without printing, we would still be in medieval darkness. Without speech itself, we would be a little better than the chimpanzees.

Thus, while we cannot fully define man’s intelligence, we can describe its attributes and its sources. Now we are ready to look out into space and see if these qualities can be found elsewhere.


Improving lives doesn’t.

Among the baker’s dozen of known galactic species that crawled their way to sapience, sociopsychologists were astonished to find that every one of them had the same intelligence. The bipeds from Earth, the avian dinosaurs from that one outer rim world, the furry bear-creatures that ate methane, put any together and they score within 10 points of each other on an IQ test. This wasn’t true for any other attribute. (Im)mortality? widely varying. Genders? Different systems. Biochemistry? Carbon through Arsenic. Size, shape? Hell no.

But intelligence? Why that?

It turns out that entry-level sapience evolves as a survival trait. Hunt/find your food, develop technologies to make that easier, maybe do some farming, and so on. After basic establishment of civilization, mortality drops by factors in the hundreds or thousands. Population booms, and you start getting plagues from the species concentrating in cities.

This is where it gets interesting. See, once you have plagues, you need doctors. And once you have doctors, you start thinking about all of the other ways to cheat death. So the plagues are beaten back by vaccinations or antibiotics, and then your civ starts concentrating on welfare and quality-of-life.

Pretty soon, your species is living at the maximum, or nearly, of their theoretically longest lives. For some species, this is an extension from a lifespan of decades to millennia.

This is bad.

At best, evolution stagnates. Your weak and stupid have the same chance of reproduction as anyone else–and they’re certainly not going to die before influencing their environments. Diseases that should have killed are mere annoyances, chomping futilely against a barrier of solid medical science. Predators that once ravaged tribes now are confined in zoos or hunted to extinction.

So no one gets any smarter.

The long and short of it is, after a certain point, intelligence is no longer a tremendous advantage to survival and, subsequently, traditional selection factors are abrogated completely. That is point at which medical science develops, which itself happens only when sapients begin the process of introspection and develop sympathy–that is, shortly after the development of sapience itself.


cosmic accident raises the IQ of everybody on Terra to about 500, or beyond super-genius. Eventually they send out a faster-than-light starship to survey the stars in the local area)

Lewis spoke slowly in the quiet of the ship: “This makes nineteen planets we’ve visited, fourteen of them with intelligent life.”

Corinth’s memory went back over what he had seen, the mountains and oceans and forests of whole worlds, the life which blossomed in splendor or struggled only to live, and the sentience which had arisen to take blind nature in hand. It had been a fantastic variety of shape and civilization. Leaping, tailed barbarians howled in their swamps; a frail and gentle race, gray like silver-dusted lead, grew their big flowers for some unknown symbolic reason; a world smoked and blazed with the fury of nations locked in an atomic death clutch, pulling down their whole culture in a voluptuous hysteria of hate; beings of centaur shape flew between the planets of their own sun and dreamed of reaching the stars; the hydrogen-breathing monsters dwelling on a frigid, poisonous giant of a planet had evolved three separate species, so vast were the distances between; the world-civilization of a biped folk who looked almost human had become so completely and inflexibly organized that individuality was lost, consciousness itself was dimming toward extinction as antlike routine took the place of thought; a small snouted race had developed specialized plants which furnished all their needs for the taking, and settled down into a tropical paradise of idleness; one nation, of the many on a ringed world, had scorned wealth and power as motivations and given themselves to a passionate artistry. Oh, they had been many and strange, there was no imagining what diversity the universe had evolved, but even now Corinth could see the pattern.

Lewis elaborated it for him: “Some of those races were much older than ours, I’m sure. And yet, Pete, none of them is appreciably more intelligent than man was before the change. You see what it indicates?”

“Well, nineteen planets—and the stars in this galaxy alone number on the order of a hundred billion, and theory says most of them have planets—what kind of a sample is that?”

“Use your head, man! It’s a safe bet that under normal evolutionary conditions a race only gets so intelligent and then stops. None of those stars have been in the inhibitor field, you know. (the "inhibitor field" is the cosmic accident that raised humanity's IQ)

“It ties in; it makes good sense. Modern man is not essentially different from the earliest Homo sapiens, either. The basic ability of an intelligent species is that of adapting environment to suit its own needs, rather than adapting itself to environment. Thus, in effect, the thinking race can maintain fairly constant conditions. It’s as true for an Eskimo in his igloo as it is for a New Yorker in his air-conditioned apartment; but machine technology, once the race stumbles on to it, makes the physical surroundings still more constant. Agriculture and medicine stabilize the biological environment. In short—once a race reaches the intelligence formerly represented by an average I.Q. of 100 to, say, 150, it doesn’t need to become smarter than it is.

Corinth nodded. “Eventually surrogate brains are developed, too, to handle problems the unaided mind couldn’t deal with,” he said. “Computers, for instance; though writing is really the same principle.

From BRAIN WAVE by Poul Anderson (1954)

Alien Communication

There are some notes on talking to aliens here.

In the real world, communication with hypothetical extraterrestrials is such a huge problem that it may never be properly solved. Researchers are having enough problems trying to talk to porpoises, and they are from our own planet. Alien thought processes might be forever inscrutable. There is a good list of examples of inscrutable alien languages on TV Tropes.

In C. J. Cherryh's Chanur novels, the methane-breathing Tc'a species are almost impossible to be communicated with, since their brains are multi-part and their speech decodes as complex matrices of intertwined meanings. In Piers Anthony's KIRLIAN QUEST, the Slash use modulated laser beams. As did the deep space beings in Jack Williamson's TRAPPED IN SPACE. In Charles Sheffield's PROTEUS novels, the Logeinan life form uses an area of skin that has changing color dots. As does the intelligent squid in Arthur C. Clarke's The Shining Ones.

And just imagine the headaches of trying to communicate with a species that uses various scents and smells instead of sound. Or radio waves. Or modulated laser beams. Or rapid changes in skin color. Or all four combined.

...the vast majority of sentients (alien races) cannot directly communicate with each other.

Some species operate on different time lines, or are out of phase with the four dimensions we can perceive, are too small or too large, or perhaps, if they had to acknowledge us, they would have to kill us.

So even when an atomic matrix life form that feeds off the microwave hum left over from the Big Bang and excretes time lives in the same solar system with your typical silicon-based life form that eats rocks and excretes hydrogen, communication between them may be close to impossible.

Luckily it's not really a big deal, because they usually don't have anything to talk about. Or so it appears, right up until said atomic matrix life form begins a simple operation to make the local sun go nova in order to harvest neutrinos, and to their surprise, are vigorously opposed by those gritty little creatures clinging to their large orbiting rocks, who have had to start throwing anti-matter around to get their attention, and things usually deteriorate from there.

From Buck Godot: The Gallimaufry by Phil Foglio

"This man Boyce," said Karellen. "Tell me all about him." The Supervisor did not use those actual words, of course, and the thoughts he really expressed were far more subtle. A human listener would have heard a short burst of rapidly modulated sound, not unlike a high-speed Morse sender in action. Though many samples of Overlord language had been recorded, they all defied analysis because of their extreme complexity. The speed of transmission made it certain that no Interpreter, even if he had mastered the elements of the language, could ever keep up with the Overlords in their normal conversation.

From Childhood's End by Arthur C. Clarke (1954)

Alien Psychology

The psychology of an alien species is any body's guess. It could be so alien as to be forever beyond our understanding. It could be quite human. Or somewhere in-between.

There is a sophisticated alien psychology generation system in the role-playing game GURPS: Uplift, and a good tutorial on TV Tropes.

Some clues to an alien species psychology might be found in their ecosystem classification. For instance, herbivores might be skittish, only comfortable in groups, and tend to flee if they feel threatened.

In James P. Hogan's The Gentle Giants of Ganymede, on the giant's planet the herbivores evolved a third circulatory system full of toxins which made their flesh poisonous to carnivores. It was so effective that carnivores became extinct. The herbivores evolved to look like animal illustrations from a nursery or kindergarten story book, all cute, plump and cuddly. The result was that the giant psychology has no confrontation, pride, or sense of danger.

Larry Niven's Puppeteers evolved from herbivores. They are the cowards of the universe, their leader is called "The Hindmost" because it is the furthest from any danger. In Puppeteer society, courage is seen as a mental illness. Puppeteers are pragmatic to a fault. Human traits such as wishful thinking and superstition are nonexistent. This means there is no level of danger that they'd consider to be an acceptable risk, the only acceptable level is 0%. They are willing to go to any lengths to protect themselves from perceived danger and provide a safer environment for themselves.

In Niven and Pournelle's classic novel Footfall, the alien Fithp are herd creatures. They do not understand how or why you would possibly initiate diplomacy before first fighting to see which party was dominant. When a Fithp is defeated, it surrenders, and thereafter becomes totally devoted and subservient to its conqueror.

Fithp are horrified when they defeat humans in battle, the humans surrender, then the humans suddenly break their surrender and counter-attack. To the Fithp, this is mad-dog behavior, and the humans are treated as such.

However aliens can have such a bizarre psychology as to be forever beyond comprehension, as in Terry Carr's "The Dance of Changer and the Three"

The Dance of the Changer and Three

(ed note: on the mineral-rich planet, the miners make contact with the alien energy-creatures native to the place (the Loarra). They receive permission to mine. After mining for four years, the Loarra show up and kill everybody outside of the mountain and destroy all the mining equipment)

After a while I sent out a fourth “eye.” One of the Loarra came over, flitted around it like a firefly, blinked through the spectrum, and settled down to hover in front for talking. It was Pura Pur who was a thousand million billion life cycles removed from the Pur we know and love, of course, but nonetheless still pretty much Pur.

I sent out a sequence of lights and movements that translated, roughly, as, “What the hell did you do that for?”

And Pur glowed pale yellow for several seconds, then gave me an answer that doesn’t translate. Or, if it does, the translation is just “Because.”

Then I asked the question again, in different terms, and she gave me the same answer in different terms. I asked a third time, and a fourth, and she came back with the same thing. She seemed to be enjoying the variations on the Dance; maybe she thought we were playing.

Well … We’d already sent out our distress call by then, so all we could do was wait for a relief ship and hope they wouldn’t attack again before the ship came, because we didn’t have a chance of fighting them, we were miners, not a military expedition. God knows what any military expedition could have done against energy things, anyway. While we were waiting, I kept sending out the “eyes,” and I kept talking to one Loarra after another. It took three weeks for the ship to get there, and I must have talked to over a hundred of them in that time, and the sum total of what I was told was this:

Their reason for wiping out the mining operation was untranslatable. No, they weren’t mad. No, they didn’t want us to go away. Yes, we were welcome to the stuff we were taking out of the depths of the Loarran ocean.

And, most importantly: No, they couldn’t tell me whether or not they were likely ever to repeat their attack.


(ed note: Chee Lan is a Cynthian, an alien resembling an angora cat. Adzel is a Wodenite, resembling a cross between centaur and a dragon. The team is trying to figure out the psychology of the Shenna of Dathyna.)

He drained his beer. Soothed thereby, he lit his pipe, settled back, and rumbled, "We got our experience and information. Also we got analogues for help. I don't think any sophonts could be total unique, in this big a universe. So we can draw on our understanding about other races.

"Like you, Chee Lan, for instance: we know you is a carnivore—but a small one—and this means you got instincts for being tough and aggressive within reason. You, Adzel, is a big omnivore, so big your ancestors didn't never need to carry chips on their shoulders, nor fish either; your breed tends more to be peaceful, but hellish independent too, in a quiet way; somebody tries for dictating your life, you don't kill him like Chee would, no, you plain don't listen at him. And we humans, we is omnivores too, but our primate ancestors went hunting in packs, and they got built in a year-around sex drive; from these two roots springs everything what makes a man a human being. Hokay? I admit this is too generalistic, but still, if we could fit what we know about the Shenna in one broad pattern—"

From SATAN'S WORLD by Poul Anderson (1968)

Alien Sex


      This is the sixth of a series of blogs on the subject of alien and monster biology. The first, which covers respiration, can be found here.

     Reproduction can take various forms, but allows a race to produce a new generation of offspring.

     In some animals pregnancy can go into suspended animation for months or years. This allows the creature to conceive, and then pause the pregnancy until a time of year or a resource state when the young are most likely to survive. This happens in creatures as diverse as the sea otter, wallaby, skunk, polar bear, roe deer, red panda, armadillo and various rodents and marsupials.
     Could this happen in other alien species? There is no reason why not. It is postulated it could also happen in people; scientists think we still have the genes for the process, they are just turned off. In order to settle another planet, wouldn’t it be useful if your initial colonists could effectively carry a second generation, who did not immediately need resources to survive?
     It is usually a female which carries the embryos or young, but does not have to be. In seahorses and pipefish, it is the male who becomes pregnant.

     Other creatures lay eggs, which may be fertilised within the body, during sexual reproduction, or outside the body in a process called external fertilisation. This is used by such diverse creatures as dinosaurs, turtles, amphibians and birds.
     Some species guard the nests, which is obviously more efficient for survival of the species; others leave the young to it. Many times more turtles hatch on beaches than ever make it to the sea. There are also creatures who sneak their young into other creature’s nests for protection eg cuckoos.
     Eggs may have hard protective shells, such as those of birds, or softer exteriors as found in frog spawn. They all contain some food store to help the maturation and growth of the creature inside the shell.
     Would alien eggs necessarily be recognised as what they are by explorers of a new environment? It is possible that they could accidentally upset a friendly species, or utterly fail to eradicate a threat species, where they had missed a life stage.

     Common chemicals such as Altrazine, a weedkiller can cause sex changes in creatures, such as frogs and fish. In a recent study of 40 male African clawed frogs, kept in a solution of Altrazine, 10% of the frogs developed into females, with 2 of those 4 frogs mating with male frogs and producing male offspring. The other 2 developed ovaries, despite maintaining male DNA.
     It is possible that your protagonist could have their sex changed by the atmosphere of the planet that they arrived on. Imagine the surprise if a male character unexpectedly became female and pregnant!
     Some animals are hermaphrodite, meaning that the are both sexes simultaneously. This is the case with slugs which can mate as either male or female; frequently they mate simultaneously as both male and female.

     Male and female creatures are not necessary for reproduction. In parthenogenesis, which is used by creatures such as snakes, sharks and amphibians, an embryo develops from an unfertilised ovum.
     Poding or budding is an asexual reproduction, used by yeasts and simple creatures, where an existing individual divides into two or more new creatures. In this way, an creature can continue almost indefinitely.


How does it reproduce?

Reproduction can, as we see on Earth, be either sexual or asexual, depending on the needs of the creature. Some organisms can actually do both, depending upon circumstance. Some types of plankton, for example, reproduce asexually when competition is low, and switch over to sexual reproduction once their population is large enough. This is called heterogamy.

Also, some "distressed, dispersed reptile communities" can reproduce by parthenogenesis, notes Dr. Mark Bullock, an astrobiologist at University of Colorado.

It's possible an alien species might have a third or even forth sex, but it's improbable due to the reduced odds of necessary interactions between the genders. Multiple species of fungus have unique mating types, which prevent an individual fungus from accidentally mating with itself. It's possible aliens may have their own mating types.

As with everything else, how your alien reproduces depends on the environment of its homeworld — but most experts seem to believe sexual reproduction of some sort will be common elsewhere. The main stumbling block for asexual reproduction is that it doesn't create the same amount of genetic diversity as sexual reproduction does, points out Dr. Jim Kasting (Dept. of Geosciences at Penn State).

by Charlie Jane Anders and Gordon Jackson (2011)

A man seeing those two Jovians would doubtless have thought, Centaur. But that was too crude. Theor's hairless red body, stub-tailed and tiger-striped, did stand upon four stout legs; but each foot had three prehensile toes. His long arms, four-fingered hands, and blocky torso might be considered anthropoid, if one overlooked innumerable details. But his round head lacked external ears and bore a roosterlike comb, fifty inches above the ground. The mouth sat close below the great eyes, and was only for eating and drinking. Speech came by vibrating muscle tissue in a pouch under the jaws.

He had no nose or lungs in any terrestrial sense. Half of a dozen slits on either side of this thorax, with lips to close them at need, let hydrogen diffuse inward, where his metabolism employed it to obtain energy by reducing organic compounds whose ultimate source was vegetation. The methane and ammonia given off by this process came out through abdominal vents. At Jovian air pressure, the system was efficient enough to support a large, active animal.

Except for a tool belt and the communicator disc hung from his neck, he was nude, being homoeothermic, and living on a planet whose slight axial tilt makes for less temperature variation than on Earth, Jovians rarely had any practical need to dress.

However, Norlak’s sex went in for gaudy clothes. The demimale was short and slim. He lacked a comb, his antennae were longer and more acute—an interminable list of differences might have been compiled. Male and demimale must both impregnate a female within a few hours of each other, for conception to result. With genetic diversity thus increased, evolution had proceeded about as fast as it does on Earth, despite the lower mutation rate in this cold and weakly irradiated environment. A mother gave live birth and fed her infant by regurgitation. In Nyarr, a three-way marriage was considered permanent and exclusive. Other societies had various other ideas.

From THREE WORLDS TO CONQUER by Poul Anderson (1964)

Chapter 12. Alien Sex

     Reproduction is unique among the many biological functions performed by living things. Take away an animal’s food or drink, or drain away its blood, or remove its skeleton, and death rapidly overtakes its enfeebled body. But deprive it of the ability to reproduce and nothing happens. The species may die out, but the individual organism lives on. Reproduction, while an enormous convenience, is not an absolute essential of life.
     This is true despite all protests that duplication is "the point of biological activity."20 The vast majority of social insects never engage in personal reproduction, and such species are extremely successful. One highly evolved contemporary terran lifeform, the mule, is quite sterile.
     It is relatively easy to imagine a nonsentient alien species designed such that, when mating occurs in a certain way or in a special environment, sterile but intelligent offspring are the result of the union. Clearly, there is no bar to the rise of intelligence in such a situation: Perhaps the hybrid’s brain mass or neural complexity is twice that of its nonsentient parents.
     At any rate, we can conceive of a race of intelligent but sterile alien hybrids residing somewhere in this commodious Galaxy. Their numbers would be supported entirely by a subrace of nonsentient breeders. The hybrids would corral and manipulate the teeming parental population, much as stockmen raise cattle and stablemen breed champion thoroughbreds. An extraterrestrial culture based on this peculiar inversion of the standard parent-offspring relationship would be fascinating to observe.
     Still, reproduction is not without its advantages. Whole-body duplication allows rapid expansion and fast evolution in new niches. We might expect that many, perhaps even most, alien races will involve reproducers.
     When the first exploratory crewed starships from Earth touch down on the continents and seas of distant worlds, will we discover that aliens, too, know sex? Is the uniquely human preoccupation with matters lustful more or less universal? If extraterrestrial lifeforms do enjoy sex as much as we, then exactly how many sexes do they enjoy? Two? Three? Ten? Might sex be alterable at will, or could more than one somehow be incorporated into a single individual? What about alien sex practices? Do ETs have orgasms? Are interspecies sexual relations possible?
     The curious Earthling demands to know.

12.1 Is Sex Necessary?

     If reproduction is merely a useful convenience, we must admit that sex is pure luxury. There is no fundamental reason why evolution and diversity cannot thrive in its absence. There is no law against asexuality.
     In point of fact, asexual reproduction is vastly more prolific in the short run. Bacterial lifeforms churn out literally billions of offspring in the space of hours, relying solely on such simple techniques as binary fission and budding. No "opposite sex" is required. And while it is true that many sexual species are also quite fecund, as a general rule fewer offspring are produced and survive to adulthood than among the asexuals.
     Furthermore, asexual reproduction is good economics. An organism which copies itself without sex passes its entire genetic heritage to its young undiluted. Offspring are exact duplicates of the originals.
     A sexual parent, on the other hand, may contribute only half of its own genes towards the construction of a child. The other half, in the case of a bisexual species, must be donated by the other parent. From the standpoint of the selfish gene, sex has a lousy profit margin in comparison to no-sex.
     Nevertheless, there is a more subtle difficulty with asexuality that turns virtue into vice.
     A completely asexual species produces a population of virtual duplicates -- except for an occasional mutation. Since variation is the raw material of evolution, and the lack of sex decreases this variation, such lifeforms should be at a distinct disadvantage when competing with their sexual brethren. New genetic combinations in asexual species can only proceed through a sequence of fortuitous mutations in the same family lineage. Asexuals therefore must "stand in line" to wait for a series of rare mutations. Change spreads only slowly through the gene pool.1044
     But sex allows the accumulation of variation in parallel, rather than in series.1045 A sexual species is able to spread many new genes rapidly throughout the population, because gene-jumbling allows a new combination, a new throw of the genetic dice, with each act of reproduction. Rare mutations become widely dispersed. So great are the advantages of sex that even many normally asexual organisms have occasional sexual encounters to beef up the waning gene pool. This is especially true in harsh or rapidly changing environments.
     For example, the freshwater hydra and the aphid reproduce asexually for most of the year. As winter approaches, with hard times ahead, these animals switch over to sexual reproduction. This ensures genetic diversity when the colonies disband and disperse with the arrival of cold weather.
     In the billion years or so since its invention, sex has proven remarkably successful -- if we are to judge from the fossil record of life on this planet. Sexual species have come to dominate the animal world, and the most widespread and important groups are all but exclusively sexual in their mode of reproduction. These broad brush strokes of nature should paint a similar picture elsewhere in the universe.
     Of course we don’t know if aliens have genes, or even if information-carrying molecules are necessary at all. For all we know, extraterrestrials may reproduce by xerography85 or in direct response to the environment by inheriting acquired characteristics.22 But one fact is clear: Variability is an advantage in the quest for biological complexity. And sex provides a unique opportunity for shuffling the data deck -- genetic or no -- which asexual techniques simply cannot match.
     If sex is necessary, then how many sexes are best? Can there be more than two?
     Terran lifeforms provide several examples of multisexuality, although they are few and far between. The lowly paramecium, for instance, has between five and ten sexes -- depending on how you count. These are distinct mating forms which arise at different times under definite conditions, and which can only mate in certain specific combinations. Another example includes fungi, notably Basidiomycetes, in which there are four distinct sexual groupings. Fungi are quadrisexuals. Still another example is found among the greylag geese -- a rather clear case of behavioral trisexuality.455 (One goose "marries" and mates with two male ganders.) Multisexuality is clearly a viable alternative. Science fiction writers and many others have toyed with the implications of intelligent trisexual and multisexual aliens for years. See especially Asimov,2485 Farmer,2500 Niven,753 Ritner,1550 and Stapledon.1946 Norms of marriage, inheritance, language, religion and social behavior would be profoundly affected by this state of affairs. Indeed, they might prove virtually incomprehensible to us. The normal social tensions caused by sexual competition would be greatly aggravated in a society in which every member was a potential mate. In their eyes, humans might appear perverted.97
     Why, then, is the vast majority of sexual terrestrial lifeforms bisexual?
     The answer seems to be that two sexual partners are just enough to provide the requisite genetic recombination. Each healthy individual has a reasonable chance to mate with a member of the opposite sex. Apparently, two are both necessary and sufficient.
     More than a single pair of sexes may seriously impair the chances for species continuity. The more sexes required for successful reproduction, the more difficult it becomes to bring them all together properly at just the right time. If there is a weak link in the mating chain -- as where one member of a reproductive triad is characteristically vulnerable to certain predators or other environmental severities -- the future of the entire species would be jeopardized. Finally, it is not clear how, say, three sexes could shuffle the genes very much better than two.
     There are no compelling reasons to exclude the possibility of a thriving population of alien multisexuals on another planet. That is, extraterrestrial multisexuality cannot be ruled out. But requiring more than two sexes for reproductive activity seems to be an unnecessarily complicated solution to a problem elegantly solved by only two.
     It’s a safe bet that bisexuality is the overwhelmingly dominant mode of sexual reproduction among the biological alien lifeforms in our Galaxy.

12.2 The Bisexual Universe

     The apparent general restriction of ETs to only two sexes is no cause for alarm. An incredible number of variations can be played on the single theme of bisexuality.
     For example, bisexuality -- contrary to popular belief -- does not demand the existence of distinct male and female forms. A case in point is the black mold Rhizopus nigricans, which displays an unusual type of sexual behavior known as "heterothallism."
     This species of fungus is bisexual, inasmuch as two organisms are required for fertilization and reproduction. However, the two sexes are indistinguishable! There are no constant differences between members of opposite mating groups other than their reciprocal behavior when crossed. Thus, it is impossible to designate one form of the black mold as male and the other as female. The complementary groups are labeled merely "+" and "-" for convenience during experiments.
     One can imagine a race of intelligent extraterrestrials, apparently unisexual to our undiscerning eyes but which actually practices heterothallic sex. Such creatures would most certainly lack secondary sexual characteristics, those hormone-induced physical landmarks such as beards and breasts to which we humans are accustomed. They might even lack distinctive primary sexual characteristics such as internal or external gonads.

12.2.1 Intersexuality

     While we might expect maleness and femaleness to be well defined among most bisexual alien species, intersexuality constitutes a major exception to this rule. Intersexuality is a state in which an organism is neither strictly female nor strictly male. Rather, it displays some alternate, intermediate, or variable condition that lies somewhere in between.2494
     There are two major classes of intersexes.
     The first of these is illustrated by a strain of fruit fly (Drosophila) which has three copies of all its chromosomes instead of the normal two. In most bisexual hereditary systems, each parent contributes one set of genes -- including the sex-determining ones -- to the offspring. But with three sets, this special strain of fly can attain intermediate states of sexual expression. Using artificial breeding techniques, any desired degree of intersexuality may be arranged: 30% male/70% female, 60% male/40% female, and so forth.
     These insects, and various higher animals such as the bovine freemartin (the female of a male-female twin pair in cattle), are called spatial intersexes. They are stuck with their ambiguous constitution for the rest of their lives. They cannot change, and are often sterile.
     Hermaphrodites represent an interesting special case of spatial intersexuality. A "simultaneous hermaphrodite" is an organism which possesses at once both female and male sex organs. Ovaries and testes are present together in the same individual. Planarians, earthworms, annelids, sponges, hydras and snails exhibit this form of bisexuality.2493 A few vertebrate simultaneous hermaphrodites are known, such as the banded flamefish (Serranus subligarius).
     But the intersexual animal can be a sex-mosaic in time as well as space. There are many organisms, of which the g*psy moth Lymantria is but one example, which start life as one sex and finish it as another. This condition, in which the two sexes are separated temporally, is called temporal intersexuality or "sequential hermaphroditism."
     Sequential hermaphrodites come in many varieties. Protoandry is a system where an animal is first male, and later female; proterogyny is the converse, with young females metamorphosing into functional males as they age. And there are many other more complicated arrangements. Populations of sea anemones, for example, consist only of females and simultaneous hermaphrodites, a condition known as gynodioecy.
     What would a temporal intersexual extraterrestrial be like? We can take a few clues from the freshwater shrimp Gammarus pulex. Each individual crustacean is both male and female, but not at the same time. Newborn animals spend early life in a neuter stage, after which they pass through puberty and enter the first sexually active phase as functioning males.
     After a while, the maleness is exhausted. Latent ovaries ripen into maturity, and the organism spends the remainder of its life as a full-fledged female. Eggs are shed by middle-aged mothers and fertilized by energetic youthful males (who are still in the middle of their first cycle).
     It is a magnificent bisexual system, one that works quite well on this planet. No one is excluded from any phase of the reproductive process. Still more significant, each member of the colony plays both male and female roles during his/her life. This cannot fail to have major effects on the intensity and depth of interpersonal relationships among these beings. In the case of such hermaphroditic aliens, the impact on the development of society, patterns of competition and aggression, laws and government, and attitudes toward the young are scarcely imaginable. (Science fiction writers have had a field day with this theme.97,226,442)
     If there exist extraterrestrial hermaphrodites patterned after the freshwater shrimp on some other planet, what would their lives be like? Dr. Norman J. Berrill, Professor of Zoology at McGill University in Montreal, gives us some insight into the lifestyle of a temporal intersexual alien:
[Measured against a human yardstick], all half-grown individuals, about ten years old and weighing about 34 kilograms, would be males, the only males, ready to act as such both sexually and probably in other wayward ways. But as troublemakers like their truly human counterparts they would undoubtedly be kept in place by a closed society of matriarchs, roughly equal in number to the males, each twice the weight and much older and wiser. And not only wiser in a general way, but in the special sense of having each been a male herself, as understanding as a mother with a child and as little likely to put up with any nonsense, perhaps wistfully looking back to her youthful manhood. Girlhood would bud as usual when masculinity had faded, with growth continuing and full female maturity yet to come. Apart from lovelife the only question is, who would do man’s work? Little men browbeaten by large women who once had been little men themselves, or the women themselves, whether full-grown and breeding or not?89
     Of course, the reverse of the above is also quite possible in ET races, although it appears much less common among the fauna of Earth. There is no reason why bisexual alien hermaphrodites could not develop along a cycle in which young females transformed into old males.
     An example of this appears in the sword-tailed minnow (Xiphophorus helleri), a teleost fish that bears live young much as the mammals do. Xiphophorus females typically produce offspring until they are a few years old. Then, during a period of only a few short weeks, they take on the characteristics of the male of the species. They produce sperm and are capable of fertilizing females. Exhaustion of the ovaries is believed to trigger the changeover.
     We see that both male-first and female-first alien intersexuals may be common, if not abundant, among the many intelligent extraterrestrial races in the universe.

12.2.2 Optional Sex

     What about the fascinating possibility that extraterrestrials might be able to choose their sex voluntarily in some fashion? How much different the world would be if sex were a matter of choice rather than accident or compulsion! It would also matter a great deal whether the decision to switch was made by society, by pressing cultural or environmental exigencies, or by the individual himself (who might exercise his sexual option at puberty).
     Xenologists are convinced that optional sexuality is a real prospect for alien lifeforms because of the many times this system has arisen independently on Earth. One common transformation, found among starfish, the slug (Limax maximus), and the molluscan gastropods Crepidula plana and Patella, involves a changeover from male to female. The cause in this case is environmental. When necessary to maintain proper ecological balance, some members of the colony will voluntarily transmute from male to simultaneous hermaphrodite. Soon thereafter, they blossom into full females without any trace of maleness remaining.
     Given the relatively major body alterations that occur during puberty in the higher mammals, it is not inconceivable that ETs might be capable of altering sex in response to the environment.
     Extraterrestrials may also be able to change sex as a purely personal prerogative.2863 Quite a few terrestrial creatures can switch back and forth between male and female on a regular basis -- and at their own pleasure. The most notable examples include the oyster and the clam.
     The native oyster begins its life as a male. After a year or two, it may change to female much like a sequential hermaphrodite. But after the animal has "ovulated" (deposited its ova into the mantle cavity), it becomes "white sick" and reverts to maleness.
     While still carrying its own embryos, the female oyster can fully retool as a working male in a matter of weeks. Male and female phases typically follow one another, in irregular cycles a few months long. This ensures that all fertilized eggs are the product of different parents, and eliminates the problem of accidental self-fertilization.
     Intelligent extraterrestrials modeled after the changeable oyster would probably experience fewer psychological conflicts, in many ways, than humans. Each individual would have the advantage of knowing the world from the viewpoint of either sex. Furthermore, the opportunity to assume the role of either mate at any time could encourage what some earthlings might regard as a promiscuous social and cultural code of liberal sexual behavior. Their political, legal, religious and humanistic traditions would doubtless reflect this added layer of complexity.
     While the sexual identity of aliens may be regulatable either by the environment or by the individual as discussed above, it may also be subject to sociocultural management. There is ample precedent for this on Earth. Numerous behavioral adaptations exist which allow colonies to regulate their sex ratio (the fraction of each sex in the population). These systems usually favor the female, and it is easy to see why.
     The female carries the egg. This is the basic raw material of reproductive activity. On the other hand, the male’s function is clearly ancillary. He is expendable.
     Consider the purely "parthenogenic" species, in which the male is dispensed with altogether. In such systems of virgin birth, eggs develop into full adults without ever being fertilized at all. The sawfly is a case of an all-female species. All of their eggs develop into more insect females, with no males -- or sex -- required in the process.89 This amounts to practical unisexuality.
     In less extreme systems, the male is not totally expendable but is still optional. A typical colony of the crustacean waterflea Daphnia is all-female, producing offspring by parthenogenesis like the sawfly. But at the first sign of trouble, such as overpopulation or the approach of winter, an interesting thing happens. The females "panic," and lay some eggs which quickly develop into males.
     If the trouble passes without incident, the males have no duties to perform and are ignored by the females -- who continue breeding parthenogenically as before. But if major difficulties do materialize, the females deign to use the male stud service to increase variability in the gene pool and ensure survival of the colony. Says one marine biologist of this arrangement: "Males are necessary, but only as a last resort." Parthenogenesis (all-female reproduction) is not limited to insects. Many species of lizards, for instance, commonly reproduce without males.2583
     So we might expect that if society has the final say, alien races will consist mostly of females when optional sex is available. Many females can be sexually serviced by a single male, so this choice is hardly surprising. What is striking and unusual is the degree of social stratification which frequently results. Biological caste systems are not uncommon.
     Honeybees are a case in point. The focus is on the only fertile female, the queen bee. A hive’s queen mates but once in her lifetime, and then only with a single male and only on her nuptial flight. The penis of the male honeybee breaks off during mating, and he promptly bleeds to death. The severed organ remains inside the queen for some time thereafter, serving as a plug to prevent the semen from dribbling out. All the eggs the queen will ever produce must be fertilized by the sperm stored from that single mating.
     As a general rule only female offspring are produced, and the beehive is populated almost exclusively by sisters. Males appear only occasionally in small numbers, whenever a new queen is needed either to replace an aging matron or to found a new colony.
     The apian assembly line is faintly reminiscent of Aldous Huxley’s Brave New World. All eggs start in the queen’s ovaries. If they are not fertilized they grow into male bees called drones. Most eggs, however, are fertilized and placed in tiny compartments in the hive. Those which are fed the regular pap of the drones mature into female bees called workers. Larvae raised on a specially enriched nutrient mix (royal jelly) grow into queens.
     Notice that the honeybee has a genetically programmed three-caste system. Queens constitute the reproductive caste. Workers, while technically females, are really neuters because their sex organs are degenerate. They represent the laboring caste, able to carry on with the daily chores of the hive without the distraction of sex. The drones, or stud caste, are virile males who lack this admirable detachment and are not good for useful work. They are usually exterminated by the workers at the approach of winter.
     Ant and termite societies have four castes -- generally two classes of royalty and two classes of industrious eunuchs. As with bees, the queen retains many fertilized eggs in her swollen belly. Kinghood and queenhood is the reward for those few active larvae who are fortunate enough to make an early escape from the maternal womb. For the vast majority, however, the exit is delayed and a horrible thing happens to them: They begin to be reabsorbed back into the body of the gravid female. The longer they delay, the smaller they are at birth. The largest become soldiers, the smallest workers. (All are sterile.)
     It is a kind of merit system. The more active the organism, the bigger its body and the higher its social status.
     The extrapolation of a breeding system with genetic castes to a race of intelligent extraterrestrials has been attempted by science fictioneers Larry Niven and Jerry Pournelle in their recent collaboration The Mote in God’s Eye.668 Their aliens, the Moties, have many tens of biological castes, each one specializing in a particular societal function. Depending on the details of birth, there are Engineers, Farmers, Mediators, Warriors, and so forth. Though the Moties are fictional, can reality be much less strange?
     As suggested earlier, there is no real limit to the dimensions of bisexual reproduction. To some ETs, optional sex may mean more than mere changeability. It may mean instead the decision to reproduce, the option to mate, the choice between life and death.
     Consider the common mole, Antichinus stuarti. These tiny animals have a brief but concentrated rutting season spanning only a few days in June. Shortly after copulation, a sudden surge of hormones automatically kills the male. This makes available greater quantities of food, water, and other critical resources for the pregnant female and, later, for the developing fatherless family.
     The price of love is death.
     Extraterrestrials patterned after such a scheme may exist on some arid world in our Galaxy. Could humans hope to fathom the psychology of an alien species in which marriage was the culmination of the life of every father, in which only females lived on from year to year and provided social continuity, and in which a single act of sex meant inevitable, almost instant, death? Conversely, could such sentient ETs comprehend our peculiar addiction to erotica, our marriage vows, our complex family life, our political institutions, or our social sexual mores and taboos?
     And which of us would better know, and understand, the true meaning of ecstasy?

From XENOLOGY, CHAPTER 12 ALIEN SEX by Robert A. Freitas Jr. (2008)

Alien Lebensraum

Desirable Real Estate

This section has been moved here.

Gas Giant Dweller

This section has been moved here.

Alien Contact

This section has been moved here.

Drake Equation

This section has been moved here.

Contact Motivation

This section has been moved here.

Contact Anti-motivation

This section has been moved here.

The Fermi Paradox

This section has been moved here.

Fermi's Nightmare

This section has been moved here.

Exterminomachy and Consequences

This section has been moved here.

Radio Silence

This section has been moved here.

The Dark Forest Rule

This section has been moved here.

The Killing Star

This section has been moved here.

Run To The Stars

This section has been moved here.


This section has been moved here.

We Know You Are Out There

This section has been moved here.

Why I Don't Worry

This section has been moved here.

The Prisoner's Dilemma

This section has been moved here.

Alien Tech Level

This section has been moved here

Apes or Angels

This section has been moved here

Chariots of the Gods, Terran Style

This section has been moved here


This section has been moved here


This section has been moved here

Technology Level

This section has been moved here

Star Gods

This section has been moved here

Indistinguishable From Nature

This section has been moved here

Aquatic Technology

This section has been moved here

Atomic Rockets notices

This week's featured addition is RADIOISOTOPE ELECTROSTATIC

This week's featured addition is PROJECT MALLAR

This week's featured addition is REUSEABLE INTERPLANETARY TRANSPORT

Atomic Rockets

Support Atomic Rockets

Support Atomic Rockets on Patreon